Advertisement

Generalized Fuzzy Morphological Operators

  • Tingquan Deng
  • Yanmei Chen
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3614)

Abstract

The adjunction in lattice theory is an important technique in lattice-based mathematical morphology and fuzzy logical operators are indispensable implements in fuzzy morphology. This paper introduces a set-valued mapping that is compatible with the infimum in a complete lattice and with a conjunction in fuzzy logic. According to the generalized operator, a concept of a fuzzy adjunction is developed to generate fuzzy morphological dilation and erosion. Fundamental properties of the generalized fuzzy morphological operators have been investigated.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Bloch, I., MaÎtre, H.: Fuzzy mathematical morphologies: a comparative study. Pattern Recognition 28, 1341–1387 (1995)MathSciNetCrossRefGoogle Scholar
  2. 2.
    Chatzis, V., Pitas, I.: A generalized fuzzy mathematical morphology and its application in robust 2-D and 3-D object. IEEE Transactions on Image Processing 9, 1798–1810 (2000)zbMATHMathSciNetCrossRefGoogle Scholar
  3. 3.
    Cornelis, C., Van der Donck, C., Kerre, E.: Sinha – Dougherty approach to the fuzzifcation of set inclusion revisited. Fuzzy Sets and Systems 134, 283–295 (2003)zbMATHMathSciNetCrossRefGoogle Scholar
  4. 4.
    Deng, T.-Q., Heijmans, H.: Grey-scale morphology based on fuzzy logic. Journal of Mathematical Imaging and Vision 16, 155–171 (2002)zbMATHMathSciNetCrossRefGoogle Scholar
  5. 5.
    Matheron, G.: Random Sets and Integral Geometry. John Wiley & Sons, New York (1975)zbMATHGoogle Scholar
  6. 6.
    Nachtegael, M., Kerre, E.: Connections between binary, grey-scale and fuzzy mathematical morphology. Fuzzy Sets and Systems 124, 73–85 (2001)zbMATHMathSciNetCrossRefGoogle Scholar
  7. 7.
    Nguyen, H., Walker, E.: A First Course in Fuzzy Logic, 2nd edn. Chapman & Hall/CRC, Boca Raton (1999)Google Scholar
  8. 8.
    Serra, J.: Image Analysis and Mathematical Morphology. Academic Press, London (1982)zbMATHGoogle Scholar
  9. 9.
    Sinha, D., Dougherty, E.: A general axiomatic theory of intrinsically fuzzy mathematical morphologies. IEEE Transactions on Fuzzy Systems 3, 389–403 (1995)CrossRefGoogle Scholar
  10. 10.
    Soille, P.: Morphological Image Analysis, 2nd edn. Springer, Heidelberg (2003)zbMATHGoogle Scholar
  11. 11.
    Sternberg, S.: Grayscale morphology. Comupter Vision, Graphics and Image Processing 35, 333–355 (1986)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2005

Authors and Affiliations

  • Tingquan Deng
    • 1
    • 2
  • Yanmei Chen
    • 1
  1. 1.Department of MathematicsHarbin Institute of TechnologyHarbinP.R. China
  2. 2.Department of AutomationTsinghua UniversityBeijingP.R. China

Personalised recommendations