Skip to main content

An Effective Approach for Mining Time-Series Gene Expression Profile

  • 239 Accesses

Part of the Studies in Computational Intelligence book series (SCI,volume 9)

Abstract

Time-series data analysis is an important problem in data mining fields due to the wide applications. Although some time-series analysis methods have been developed in recent years, they can not effectively resolve the fundamental problems in time-series gene expression mining in terms of scale transformation, offset transformation, time delay and noises. In this paper, we propose an effective approach for mining time-series data and apply it on time-series gene expression profile analysis. The proposed method utilizes dynamic programming technique and correlation coefficient measure to find the best alignment between the time-series expressions under the allowed number of noises. Through experimental evaluation, our method was shown to effectively resolve the four problems described above simultaneously. Hence, it can find the correct similarity and imply biological relationships between gene expressions.

Keywords

These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

This is a preview of subscription content, log in via an institution.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Author information

Authors and Affiliations

Authors

Editor information

Tsau Young Lin Setsuo Ohsuga Churn-Jung Liau Xiaohua Hu

Rights and permissions

Reprints and permissions

About this chapter

Cite this chapter

S. M. Tseng, V., Chen, YL. An Effective Approach for Mining Time-Series Gene Expression Profile. In: Young Lin, T., Ohsuga, S., Liau, CJ., Hu, X. (eds) Foundations and Novel Approaches in Data Mining. Studies in Computational Intelligence, vol 9. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11539827_20

Download citation

  • DOI: https://doi.org/10.1007/11539827_20

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-28315-7

  • Online ISBN: 978-3-540-31229-1

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics