Skip to main content

Quotient Space Based Cluster Analysis1

Part of the Studies in Computational Intelligence book series (SCI,volume 9)

Abstract

In the paper, the clustering is investigated under the concept of granular computing, i.e.,the framework of quotient space theory. In principle, there are mainly two kinds of similarity measurement used in cluster analysis: one for measuring the similarity among objects (data, points); the other for measuring the similarity between objects and clusters (sets of objects). Therefore, there are mainly two categories of clustering corresponding to the two measurements. Furthermore, the fuzzy clustering is gained when the fuzzy similarity measurement is used. From the granular computing point of view, all these categories of clustering can be represented by a hierarchical structure in quotient spaces. From the hierarchical structures, several new characteristics ofclustering can be obtained. It may provide a new way for further investigating clustering.

This is a preview of subscription content, log in via an institution.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Author information

Authors and Affiliations

Authors

Editor information

Tsau Young Lin Setsuo Ohsuga Churn-Jung Liau Xiaohua Hu

Rights and permissions

Reprints and permissions

About this chapter

Cite this chapter

Bo Zhang, L., Zhang, B. Quotient Space Based Cluster Analysis1. In: Young Lin, T., Ohsuga, S., Liau, CJ., Hu, X. (eds) Foundations and Novel Approaches in Data Mining. Studies in Computational Intelligence, vol 9. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11539827_15

Download citation

  • DOI: https://doi.org/10.1007/11539827_15

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-28315-7

  • Online ISBN: 978-3-540-31229-1

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics