Abstract
In the paper, the clustering is investigated under the concept of granular computing, i.e.,the framework of quotient space theory. In principle, there are mainly two kinds of similarity measurement used in cluster analysis: one for measuring the similarity among objects (data, points); the other for measuring the similarity between objects and clusters (sets of objects). Therefore, there are mainly two categories of clustering corresponding to the two measurements. Furthermore, the fuzzy clustering is gained when the fuzzy similarity measurement is used. From the granular computing point of view, all these categories of clustering can be represented by a hierarchical structure in quotient spaces. From the hierarchical structures, several new characteristics ofclustering can be obtained. It may provide a new way for further investigating clustering.
This is a preview of subscription content, log in via an institution.
Preview
Unable to display preview. Download preview PDF.
Author information
Authors and Affiliations
Editor information
Rights and permissions
About this chapter
Cite this chapter
Bo Zhang, L., Zhang, B. Quotient Space Based Cluster Analysis1. In: Young Lin, T., Ohsuga, S., Liau, CJ., Hu, X. (eds) Foundations and Novel Approaches in Data Mining. Studies in Computational Intelligence, vol 9. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11539827_15
Download citation
DOI: https://doi.org/10.1007/11539827_15
Published:
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-28315-7
Online ISBN: 978-3-540-31229-1
eBook Packages: EngineeringEngineering (R0)
