Skip to main content

Task-Oriented Sparse Coding Model for Pattern Classification

  • Conference paper
Advances in Natural Computation (ICNC 2005)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 3610))

Included in the following conference series:

Abstract

Although the basic sparse coding model has been quite successful at explaining the receptive fields of simple cells in V1, it ignores an important constrain: perception task. We put forward a novel sparse coding model, called task-oriented sparse coding (TOSC) model, combining the discriminability constrain supervised by classification task, besides the sparseness criteria. Simulation experiments are performed using real images including class of scene and class of building. The results show that TOSC can organize some significant receptive fields with distinct topological structure which will favor the classification task. Moreover, the coefficients of TOSC notablely improve the classification accuracy, from the 53.5% of pixel-based model to 86.7%, in the case of none distinct damage on the performance of reconstruction error and sparseness. TOSC model, complementing the feedback sparse coding model, is more consistent with biological mechanism, and shows good potential in the feature extraction for pattern classification.

This paper is supported by National Natural Science Foundation of China No. 60435010 and National Basic Research Priorities Programme No. 2003CB317004.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Olshausen, B.A., Field, D.J.: Emergence of simple-cell receptive field properties by learning a sparse code for natural images. Nature 381, 131–133 (1996)

    Article  Google Scholar 

  2. Vinje, W.E., Gallant, J.L.: Sparse coding and decorrelation in primary visual cortex during natural vision. Science 287, 1273–1276 (2000)

    Article  Google Scholar 

  3. Vinje, W.E., Gallant, J.L.: Natural stimulation of the nonclassical receptive field increases information transmission efficiency in V1. Journal Neuronscience 22, 2904–2915 (2002)

    Google Scholar 

  4. Kac, M.: Microciruits in visual cortex. Current Opin Neuronbiol. 12, 418–425 (2002)

    Article  Google Scholar 

  5. Douglas, R.J., Koch, C., Mahowald, M., Martin, K.A., Suarez, H.H.: Recurrent excitation in neocortical circuits. Science 269, 981–985 (1995)

    Article  Google Scholar 

  6. Barlow, H.B.: Single units and sensation: a neuron doctrine for perceptual psychology? Perception 1, 371–394 (1972)

    Article  Google Scholar 

  7. Mumford, D.: Neuronal architectures for pattern-theoretic problems. In: Koch, C., Davis, J.L. (eds.) Large scale neuronal theories of the brain, pp. 125–152. MIT Press, Cambridge (1997)

    Google Scholar 

  8. Friedman, J.H.: Exploratory projection pursuit. Journal of the American Statistical Association 82, 249–266 (1987)

    Article  MATH  MathSciNet  Google Scholar 

  9. Atick, J.J., Redlich, A.N.: Towards a theory of early visual processing. Neural Computation 2, 308–320 (1990)

    Article  Google Scholar 

  10. Olshausen, B.A., Field, D.J.: Sparse coding with an overcomplete basis set: A strategy employed by V1? Vision Research 37, 3311–3325 (1997)

    Article  Google Scholar 

  11. Olshausen, B.A., David, J.F.: Sparse coding of sensory inputs. Current Opinion in Neurobilogy 14, 481–487 (2004)

    Article  Google Scholar 

  12. Levy, W.B., Baxter, R.A.: Energy efficient neural codes. Neural Computation 8, 531–543 (1996)

    Article  Google Scholar 

  13. Atick, J.J., Redlich, A.N.: Convergent algorithm for sensory receptive field development. Neural Computation 5, 45–60 (1993)

    Article  Google Scholar 

  14. Bell, A.J., Sejnowski, T.J.: The “Independent components” of natural scenes are edge filters. Vision Research 37, 3327–3338 (1997)

    Article  Google Scholar 

  15. Gilbert, C.D., Wiesel, T.N.: Morphology and intracortical projections of functionally identified neurons in cat visual cortex. Nature 280, 120–125 (1979)

    Article  Google Scholar 

  16. Miikkulainen, R., Sirosh, J.: Introduction: the emerging understanding of lateral interactions in the cortex. Lateral interaction in the cortex: structure and function. Electronic book ISBN 0-9647060-0-8

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Li, Q., Lin, D., Shi, Z. (2005). Task-Oriented Sparse Coding Model for Pattern Classification. In: Wang, L., Chen, K., Ong, Y.S. (eds) Advances in Natural Computation. ICNC 2005. Lecture Notes in Computer Science, vol 3610. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11539087_121

Download citation

  • DOI: https://doi.org/10.1007/11539087_121

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-28323-2

  • Online ISBN: 978-3-540-31853-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics