Skip to main content

What Would Edmonds Do? Augmenting Paths and Witnesses for Degree-Bounded MSTs

  • Conference paper
Approximation, Randomization and Combinatorial Optimization. Algorithms and Techniques (APPROX 2005, RANDOM 2005)

Abstract

Given a graph and degree upper bounds on vertices, the BDMST problem requires us to find the minimum cost spanning tree respecting the given degree bounds.Könemann and Ravi [10,11] give bicriteria approximation algorithms for the problem using local search techniques of Fischer [5]. For a graph with a cost C, degree B spanning tree, and parameters b, w> 1, their algorithm produces a tree whose cost is at most wC and whose degree is at most \(\frac{w}{w-1}bB + \log_b n.\) We give a polynomial-time algorithm that finds a tree of optimal cost and with maximum degree at most bB + 2(b+1)log b n. We also give a quasi-polynomial algorithm which produces a tree of optimal cost C and maximum degree bounded by B + O(log n/loglog n). Our algorithms work when there are upper as well as lower bounds on the degrees of the vertices.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Chan, T.M.: Euclidean bounded-degree spanning tree ratios. In: Proceedings of the nineteenth annual symposium on Computational geometry, pp. 11–19. ACM Press, New York (2003)

    Google Scholar 

  2. Edmonds, J.: Maximum matching and a polyhedron with 0–1 vertices. Journal of Research National Bureau of Standards 69B, 125–130 (1965)

    MathSciNet  Google Scholar 

  3. Edmonds, J.: Paths, trees, and flowers. Canadian Journal of Mathematics 17, 449–467 (1965)

    Article  MATH  MathSciNet  Google Scholar 

  4. Even, S., Tarjan, R.E.: Network flow and testing graph connectivity. SIAM. Journal on Computing 4(4), 507–518 (1975)

    MATH  MathSciNet  Google Scholar 

  5. Fischer, T.: Optimizing the degree of minimum weight spanning trees. Technical Report 14853, Dept. of Computer Science, Cornell University, Ithaca, NY (1993)

    Google Scholar 

  6. Fürer, M., Raghavachari, B.: Approximating the minimum-degree Steiner tree to within one of optimal. Journal of Algorithms 17(3), 409–423 (1994)

    Article  MathSciNet  Google Scholar 

  7. Hopcroft, J., Karp, R.: An n 5/2 algorithm for maximum matching in bipartite graphs. SIAM Journal on Computing 2, 225–231 (1973)

    Article  MATH  MathSciNet  Google Scholar 

  8. Jothi, R., Raghavachari, B.: Degree-bounded minimum spanning trees. In: Proc. 16th Canadian Conf. on Computational Geometry (CCCG) (2004)

    Google Scholar 

  9. Khuller, S., Raghavachari, B., Young, N.: Low-degree spanning trees of small weight. SIAM J. Comput. 25(2), 355–368 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  10. Könemann, J., Ravi, R.: A matter of degree: improved approximation algorithms for degree-bounded minimum spanning trees. In: Proceedings of ACM STOC (2000)

    Google Scholar 

  11. Könemann, J., Ravi, R.: Primal-dual meets local search: approximating MST’s with nonuniform degree bounds. In: ACM (ed.) Proceedings ACM STOC (2003)

    Google Scholar 

  12. Krishnan, R., Raghavachari, B.: The directed minimum degree spanning tree problem. In: Hariharan, R., Mukund, M., Vinay, V. (eds.) FSTTCS 2001. LNCS, vol. 2245, pp. 232–243. Springer, Heidelberg (2001)

    Chapter  Google Scholar 

  13. Papadimitriou, C.H., Vazirani, U.: On two geometric problems related to the traveling salesman problem. J. Algorithms 5, 231–246 (1984)

    Article  MATH  MathSciNet  Google Scholar 

  14. Ravi, R., Marathe, M.V., Ravi, S.S., Rosenkrantz, D.J., Hunt III., H.B.: Many birds with one stone: multi-objective approximation algorithms. In: Proceedings of ACM STOC (1993)

    Google Scholar 

  15. Ravi, R., Marathe, M.V., Ravi, S.S., Rosenkrantz, D.J., Hunt III., H.B.: Approximation algorithms for degree-constrained minimum-cost network-design problems. Algorithmica 31 (2001)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Chaudhuri, K., Rao, S., Riesenfeld, S., Talwar, K. (2005). What Would Edmonds Do? Augmenting Paths and Witnesses for Degree-Bounded MSTs. In: Chekuri, C., Jansen, K., Rolim, J.D.P., Trevisan, L. (eds) Approximation, Randomization and Combinatorial Optimization. Algorithms and Techniques. APPROX RANDOM 2005 2005. Lecture Notes in Computer Science, vol 3624. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11538462_3

Download citation

  • DOI: https://doi.org/10.1007/11538462_3

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-28239-6

  • Online ISBN: 978-3-540-31874-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics