Alon, N., Naor, A.: Approximating the cut-norm via Grothendieck’s inequality. In: Proceedings of the 36th Annual ACM Symposium on Theory of Computing, Chicago, Illinois, pp. 72–80 (2004)
Google Scholar
Charikar, M., Wirth, A.: Maximizing Quadratic Programs: Extending Grothendieck’s Inequality. In: Proceedings of the 45th Annual IEEE Symposium on Foundations of Computer Science, Rome, Italy, pp. 54–60 (2004)
Google Scholar
Delorme, C., Poljak, S.: Combinatorial properties and the complexity of a max-cut approximation. European Journal of Combinatorics 14(4), 313–333 (1993)
MATH
CrossRef
MathSciNet
Google Scholar
Delorme, C., Poljak, S.: Laplacian eigenvalues and the maximum cut problem. Mathematical Programming 62(3, Ser. A), 557–574 (1993)
CrossRef
MathSciNet
MATH
Google Scholar
Feige, U., Goemans, M.X.: Approximating the value of two prover proof systems, with applications to MAX-2SAT and MAX-DICUT. In: Proceedings of the 3rd Israel Symposium on Theory and Computing Systems, Tel Aviv, Israel, pp. 182–189 (1995)
Google Scholar
Feige, U., Langberg, M.: The RPR2 rounding technique for semidefinite programs. In: Proceedings of the 28th Int. Coll. on Automata, Languages and Programming, Crete, Greece, pp. 213–224 (2001)
Google Scholar
Feige, U., Schechtman, G.: On the integrality ratio of semidefinite relaxations of MAX CUT. In: Proceedings of the 33th Annual ACM Symposium on Theory of Computing, Crete, Greece, pp. 433–442 (2001)
Google Scholar
Goemans, M.X., Williamson, D.P.: Improved Approximation Algorithms for Maximum Cut and Satisfiability Problems Using Semidefinite Programming. Journal of the ACM 42, 1115–1145 (1995)
MATH
CrossRef
MathSciNet
Google Scholar
Håastad, J.: Some optimal inapproximability results. Journal of the ACM 48(4), 798–859 (2001)
CrossRef
MathSciNet
Google Scholar
Khot, S., Kindler, G., Mossel, E., O’Donnell, R.: Optimal inapproimability resutls for MAX-CUT and other 2-variable CSPs? In: Proceedings of the 45th Annual IEEE Symposium on Foundations of Computer Science, Rome, Italy, pp. 146–154 (2004)
Google Scholar
Lewin, M., Livnat, D., Zwick, U.: Improved rounding techniques for the MAX 2-SAT and MAX DI-CUT problems. In: Cook, W.J., Schulz, A.S. (eds.) IPCO 2002. LNCS, vol. 2337, pp. 67–82. Springer, Heidelberg (2002)
CrossRef
Google Scholar
Matuura, S., Matsui, T.: 0.863-approximation algorithm for MAX DICUT. In: Goemans, M.X., Jansen, K., Rolim, J.D.P., Trevisan, L. (eds.) RANDOM 2001 and APPROX 2001. LNCS, vol. 2129, pp. 138–146. Springer, Heidelberg (2001)
CrossRef
Google Scholar
Matuura, S., Matsui, T.: 0.935-approximation randomized algorithm for MAX 2SAT and its derandomization. Technical Report METR 2001-03, Department of Mathematical Engineering and Information Physics, the University of Tokyo, Japan (September 2001)
Google Scholar
Schoenberg, I.J.: Positive definite functions on spheres. Duke Math J. 9, 96–107 (1942)
MATH
CrossRef
MathSciNet
Google Scholar
Zwick, U.: Outward rotations: a tool for rounding solutions of semidefinite programming relaxations, with applications to MAX CUT and other problems. In: Proceedings of the 31th Annual ACM Symposium on Theory of Computing, Atlanta, Georgia, pp. 679–687 (1999)
Google Scholar