Skip to main content

A Lower Bound on List Size for List Decoding

  • Conference paper

Part of the Lecture Notes in Computer Science book series (LNTCS,volume 3624)

Abstract

A q-ary error-correcting code C ⊆ {1,2,...,q}n is said to be list decodable to radius ρ with list size L if every Hamming ball of radius ρ contains at most L codewords of C. We prove that in order for a q-ary code to be list-decodable up to radius (1–1/q)(1–ε)n, we must have L = Ω(1/ε 2). Specifically, we prove that there exists a constant c q >0 and a function f q such that for small enough ε > 0, if C is list-decodable to radius (1–1/q)(1–ε)n with list size c q /ε 2, then C has at most f q (ε) codewords, independent of n. This result is asymptotically tight (treating q as a constant), since such codes with an exponential (in n) number of codewords are known for list size L = O(1/ε 2).

A result similar to ours is implicit in Blinovsky [Bli] for the binary (q=2) case. Our proof works for all alphabet sizes, and is technically and conceptually simpler.

Keywords

  • Average Correlation
  • Binary Code
  • Block Length
  • List Size
  • Alphabet Size

These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/11538462_27
  • Chapter length: 12 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   39.99
Price excludes VAT (USA)
  • ISBN: 978-3-540-31874-3
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   54.99
Price excludes VAT (USA)

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Blinovsky, V.M.: Bounds for codes in the case of list decoding of finite volume. Problems of Information Transmission 22(1), 7–19 (1986)

    Google Scholar 

  2. Elias, P.: List decoding for noisy channels. Technical Report 335, Research Laboratory of Electronics, MIT (1957)

    Google Scholar 

  3. Elias, P.: Error-correcting codes for list decoding. IEEE Transactions on Information Theory 37, 5–12 (1991)

    CrossRef  MATH  MathSciNet  Google Scholar 

  4. Guruswami, V.: List decoding from erasures: Bounds and code constructions. IEEE Transactions on Information Theory 49(11), 2826–2833 (2003)

    CrossRef  MathSciNet  Google Scholar 

  5. Guruswami, V., Hastad, J., Sudan, M., Zuckerman, D.: Combinatorial bounds for list decoding. IEEE Transactions on Information Theory 48(5), 1021–1035 (2002)

    CrossRef  MATH  MathSciNet  Google Scholar 

  6. Lu, C.-J., Tsai, S.-C., Wu, H.-L.: On the complexity of hardness amplification. In: Proceedings of the 20th Annual IEEE Conference on Computational Complexity, San Jose, CA (June 2005) (to appear)

    Google Scholar 

  7. Radhakrishnan, J., Ta-Shma, A.: Bounds for dispersers, extractors, and depth-two superconcentrators. SIAM Journal on Discrete Mathematics 13(1), 2–24 (2000) (electronic)

    CrossRef  MATH  MathSciNet  Google Scholar 

  8. Ta-Shma, A., Zuckerman, D.: Extractor codes. IEEE Transactions on Information Theory 50(12), 3015–3025 (2004)

    CrossRef  MathSciNet  Google Scholar 

  9. Trevisan, L.: Extractors and Pseudorandom Generators. Journal of the ACM 48(4), 860–879 (2001)

    CrossRef  MATH  MathSciNet  Google Scholar 

  10. Vadhan, S.P.: Randomness Extractors and their Many Guises. Tutorial at IEEE Symposium on Foundations of Computer Science (November 2002), Slides available at http://eecs.harvard.edu/~salil

  11. Wozencraft, J.M.: List Decoding. Quarterly Progress Report, Research Laboratory of Electronics 48, 90–95 (1958)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2005 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Guruswami, V., Vadhan, S. (2005). A Lower Bound on List Size for List Decoding. In: Chekuri, C., Jansen, K., Rolim, J.D.P., Trevisan, L. (eds) Approximation, Randomization and Combinatorial Optimization. Algorithms and Techniques. APPROX RANDOM 2005 2005. Lecture Notes in Computer Science, vol 3624. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11538462_27

Download citation

  • DOI: https://doi.org/10.1007/11538462_27

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-28239-6

  • Online ISBN: 978-3-540-31874-3

  • eBook Packages: Computer ScienceComputer Science (R0)