Dropout-Tolerant TTP-Free Mental Poker

  • Jordi Castellà-Roca
  • Francesc Sebé
  • Josep Domingo-Ferrer
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3592)

Abstract

There is a broad literature on distributed card games over communications networks, collectively known as mental poker. Like in any distributed protocol, avoiding the need for a Trusted Third Party (TTP) in mental poker is highly desirable, because really trusted TTPs are not always available and seldom free. This paper deals with the player dropout problem in mental poker without a TTP. A solution based on zero-knowledge proofs is proposed. While staying TTP-free, our proposal allows the game to continue after player dropout.

Keywords

Mental poker player dropout 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Barnett, A., Smart, N.: Mental poker revisited. In: Paterson, K.G. (ed.) Cryptography and Coding 2003. LNCS, vol. 2898, pp. 370–383. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  2. 2.
    Chaum, D., Pedersen, T.: Wallet databases with observers. In: Brickell, E.F. (ed.) CRYPTO 1992. LNCS, vol. 740, pp. 89–105. Springer, Heidelberg (1993)Google Scholar
  3. 3.
    Cramer, R., Damgård, I., Schoenmakers, B.: Proofs of partial knowledge and simplified design of witness hiding protocols. In: Desmedt, Y.G. (ed.) CRYPTO 1994. LNCS, vol. 839, pp. 174–187. Springer, Heidelberg (1994)Google Scholar
  4. 4.
    Crépeau, C.: A secure poker protocol that minimizes the effect of player coalitions. In: Williams, H.C. (ed.) CRYPTO 1985. LNCS, vol. 218, pp. 73–86. Springer, Heidelberg (1986)Google Scholar
  5. 5.
    Crépeau, C.: A zero-knowledge poker protocol that achieves confidentiality of the players’ strategy or how to achieve an electronic poker face. In: Odlyzko, A.M. (ed.) CRYPTO 1986. LNCS, vol. 263, pp. 239–250. Springer, Heidelberg (1987)Google Scholar
  6. 6.
    Desmedt, Y., Frankel, Y.: Threshold cryptosystems. In: Brassard, G. (ed.) CRYPTO 1989. LNCS, vol. 435, pp. 307–315. Springer, Heidelberg (1990)Google Scholar
  7. 7.
    Kurosawa, K., Katayama, Y., Ogata, W.: Reshufflable and laziness tolerant mental card game protocol. TIEICE: IEICE Transactions on Communications/Electronics/Information and Systems E00-A (1997)Google Scholar
  8. 8.
    Pedersen, T.P.: A threshold cryptosystem without a trusted party. In: Davies, D.W. (ed.) EUROCRYPT 1991. LNCS, vol. 547, pp. 522–526. Springer, Heidelberg (1991)Google Scholar
  9. 9.
    Schindelhauer, C.: A toolbox for mental card games, Medizinische Universität Lübeck (1998), http://citeseer.nj.nec.com/schindelhauer98toolbox.html
  10. 10.
    Soo, W.H., Samsudin, A., Goh, A.: Efficient mental card shuffling via optimised arbitrary-sized benes permutation network. In: Chan, A.H., Gligor, V.D. (eds.) ISC 2002. LNCS, vol. 2433, pp. 446–458. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  11. 11.
    Stadler, M.: Publicly verifiable secret sharing. In: Maurer, U.M. (ed.) EUROCRYPT 1996. LNCS, vol. 1070, pp. 190–199. Springer, Heidelberg (1996)Google Scholar
  12. 12.
    Yung, M.: Cryptoprotocols: Subscription to a public key, the secret blocking and the multi-player mental poker game. In: Blakely, G.R., Chaum, D. (eds.) CRYPTO 1984. LNCS, vol. 196, pp. 439–453. Springer, Heidelberg (1985)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2005

Authors and Affiliations

  • Jordi Castellà-Roca
    • 1
  • Francesc Sebé
    • 1
  • Josep Domingo-Ferrer
    • 1
  1. 1.Dept. of Computer Engineering and MathsRovira i Virgili University of TarragonaTarragona, CataloniaSpain

Personalised recommendations