Skip to main content

Polymorphism and Danger Susceptibility of System Call DASTONs

  • Conference paper

Part of the Lecture Notes in Computer Science book series (LNTCS,volume 3627)

Abstract

We have proposed a metaphor “DAnger Susceptible daTa codON” (DASTON) in data subject to processing by Danger Theory (DT) based Artificial Immune System (DAIS). The DASTONs are data chunks or data point sets that actively take part to produce “danger”; here we abstract “danger” as required outcome. To have closer look to the metaphor, this paper furthers biological abstractions for DASTON. Susceptibility of DASTON is important parameter for generating dangerous outcome. In biology, susceptibility of a host to pathogenic activities (potentially dangerous activities) is related to polymorphism. Interestingly, results of experiments conducted for system call DASTONs are in close accordance to biological theory of polymorphism and susceptibility. This shows that computational data (system calls in this case) exhibit biological properties when processed with DT point of view.

Keywords

  • Intrusion Detection
  • Danger Signal
  • System Call
  • Artificial Immune System
  • Data Chunk

These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Iqbal, A., Maarof, M.A.: Towards Danger Theory based Artificial APC Model: Novel Metaphor for Danger Susceptible Data Codons. In: Nicosia, G., Cutello, V., Bentley, P.J., Timmis, J. (eds.) ICARIS 2004. LNCS, vol. 3239, pp. 161–174. Springer, Heidelberg (2004)

    CrossRef  Google Scholar 

  2. Aickelin, U., Cayzer, S.: The Danger Theory and Its Application to Artificial Immune Systems. In: Proceedings of the International Conference on Artificial Immune Systems (ICARIS 2002), Edinburgh, UK (2002)

    Google Scholar 

  3. Aicklein, U., Bentley, P., Cayser, S., Kim, J., McLeod, J.: Danger Theory: The Link between AIS and IDS. In: Timmis, J., Bentley, P.J., Hart, E. (eds.) ICARIS 2003. LNCS, vol. 2787, pp. 147–155. Springer, Heidelberg (2003)

    CrossRef  Google Scholar 

  4. Hart, E., Ross, P.: Improving SOSDM: Inspirations from the Danger Theory. In: Timmis, J., Bentley, P.J., Hart, E. (eds.) ICARIS 2003. LNCS, vol. 2787, pp. 194–203. Springer, Heidelberg (2003)

    CrossRef  Google Scholar 

  5. Secker, A., Freitas, A.A., Timmis, J.: A Danger Theory Inspired Approach to Web Mining. In: Timmis, J., Bentley, P.J., Hart, E. (eds.) ICARIS 2003. LNCS, vol. 2787, pp. 156–167. Springer, Heidelberg (2003)

    CrossRef  Google Scholar 

  6. Matzinger, P.: The Danger Model: A Renewed Sense of Self. Science 296, 301–305 (2002)

    CrossRef  Google Scholar 

  7. Matzinger, P.: The Danger Model In Its Historical Context. Scand. J. Immunol. 54, 4–9 (2001)

    CrossRef  Google Scholar 

  8. Gallucci, S., Lolkema, M., Matzinger, P.: Natural Adjuvants: Endogenous Activators of Dendritic Cells. Nature Medicine 5(11), 1249–1255 (1999)

    CrossRef  Google Scholar 

  9. Matzinger, P.: The Real Function of The Immune System, http://cmmg.biosci.wayne.edu/asg/polly.html (last accessed on 06-04-04)

  10. Matzinger, P.: An Innate sense of danger. Seminars in Immunology 10, 399–415 (1998)

    CrossRef  Google Scholar 

  11. Lutz, M.A., Gervais, F., Bernstein, A., Hattel, A.L., Correll, P.H.: STK Receptor Tyrosine Kinase Regulates Susceptibility to Infection with Listeria Monocytogenes. Infection and Immunity 70(1), 416–418 (2002)

    CrossRef  Google Scholar 

  12. Roy, S., Hill, A.V.S., Knox, K., Griffithsand, D., Crook, D.: Association of Common Genetic Variant with Susceptibility to Invasive Pneumococcal Disease. BMJ 324, 1369 (2002)

    CrossRef  Google Scholar 

  13. Goldmann, W.: The Significance of Genetic Control in TSEs. MicrobiologyToday 30, 170–171 (2003)

    Google Scholar 

  14. Blackwell, J.: Genetics and Genomics in Infectious Disease, CIMR Research Report (2002), http://www.cimr.cam.ac.uk/resreports/report2002/pdf/blackwell_low.pdf (last accessed on 06-04-04)

  15. Coussens, P.M., Tooker, B., Nobis, W., Coussens, M.J.: Genetics and Genomics of Susceptibility to Mycobacterial Infections in Cattle. Online publication on the 2001 IAAFSC web site (2001)

    Google Scholar 

  16. Hill, A.V.S.: Genetics and Genomics of Infectious Disease Susceptibility. British Medical Bulletin. 55(2), 401–413 (1999)

    CrossRef  Google Scholar 

  17. Tavtigian, S.V., et al.: A Candidate Prostate Cancer Susceptibility Gene at Chromosome 17p. Nature Genetics 27, 172–180 (2001)

    CrossRef  Google Scholar 

  18. Casanova, J.-L.: Mendelian Susceptibility to Mycobacterial Infection in Man. Swiss Med. Weekly 131, 445–454 (2001)

    Google Scholar 

  19. Denny, P., Hopes, E., Gingles, N., Broman, K.W., McPheat, W., Morten, J., Alexander, J., Andrew, P.W., Brown, S.D.M.: A major Locus Conferring Susceptibility to Infection by Streptococcus Pneumoniae in Mice. Mammalian Genome 14, 448–453 (2003)

    CrossRef  Google Scholar 

  20. Forrest, S., Balthrop, J., Glickman, M., Ackley, D.: Computation in the Wild. In: Park, K., Willins, W. (eds.) The Internet as a Large-Complex System. Oxford University Press, Oxford (2002)

    Google Scholar 

  21. Intrusion Detection Data Sets, http://www.cs.unm.edu/immsec/systemcalls.htm (last cited on 01-05-2005)

  22. Zhou, Y.-S., Wang, F.-S., Liu, M.-X., Jin, L., Hong, W.-G.: Relationship between susceptibility of hepatitis B virus and gene polymorphism of tumor necrosis factor-a. World Chin. J. Digestol. 13(2), 207–210 (2005)

    Google Scholar 

  23. Kwiatkowski, D.: Susceptibility to infection. BMJ 321, 1061–1065 (2000)

    CrossRef  Google Scholar 

  24. Knapp, S., Hennig, B.J.W.: Interleukin-10 promoter polymorphisms and the outcome of hepatitis C virus infection. Immunogenetics 55, 362–369 (2003)

    CrossRef  Google Scholar 

  25. Hill, A.V.S.: Genetics and genomics of infectious disease susceptibility. British Medical Bulletin 55(2), 401–413 (1999)

    CrossRef  Google Scholar 

  26. Sabouri, A.H., Saito, M.: Polymorphism in the Interleukin-10 Promoter Affects Both Provirus Load and the Risk of Human T Lymphotropic Virus Type I–Associated Myelopathy/Tropical Spastic Paraparesis. Journal of Infectious Diseases 190, 1279–1285 (2004)

    CrossRef  Google Scholar 

  27. Kang, D.-K., Fuller, D., Honavar, V.: Learning Classifiers for Misuse and Anomaly Detection Using a Bag of System Calls Representation. Technical Report ISU-CS-TR 05-06, Computer Science Department, Iowa State University, Ames, IA, USA, March 3 (2005)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2005 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Iqbal, A., Maarof, M.A. (2005). Polymorphism and Danger Susceptibility of System Call DASTONs. In: Jacob, C., Pilat, M.L., Bentley, P.J., Timmis, J.I. (eds) Artificial Immune Systems. ICARIS 2005. Lecture Notes in Computer Science, vol 3627. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11536444_28

Download citation

  • DOI: https://doi.org/10.1007/11536444_28

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-28175-7

  • Online ISBN: 978-3-540-31875-0

  • eBook Packages: Computer ScienceComputer Science (R0)