Skip to main content

A Comparative Study on Modeling Strategies for Immune System Dynamics Under HIV-1 Infection

  • Conference paper
Artificial Immune Systems (ICARIS 2005)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 3627))

Included in the following conference series:

Abstract

Considerable research effort has provided mathematical and computational models of the human immune response under viral infection. However, the quality of simulated results are highly dependent on the choice of modeling strategy. We examine two modeling approaches of HIV pathogenesis: Mathematical and Multi-Agent (or MA) Models. The latter has relatively wider Model Scope due to the agent-rule specification method. Mathematical Models employ Parameter and Population/Subpopulation Level entity granularities with equation-based interaction, while MA Models specify entities at Individual Level, implemented with agents to describe interactions via IF-THEN rules. Compared to the former, MA Models naturally handles entity heterogeneity and spatial non-uniformity, and suffers less from the issue of directly designed dynamics. Both approaches are however, not directly accessible to immunologists due to the need for programming knowledge; hence, closer collaboration between computer scientists and immunologists is necessary.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. RePast, http://repast.sourceforge.net

  2. Banchereau, J.: The long arm of the immune system. Scientific American 287, 52–59 (2002)

    Article  Google Scholar 

  3. Bar-Yam, Y.: Dynamics of Complex Systems. Westview Press (1997)

    Google Scholar 

  4. Bergmann, C., Van Hemmen, J.L., Segel, L.A.: Th1 or Th2: how an appropriate T helper response can be made. Bull. Math. Biol. 63, 405–430 (2001)

    Article  Google Scholar 

  5. Caetano, A., Grilo, A.: Modeling thymic selection and concomitant immune responses on CD4+T lymphocyte sub-populations. In: Proc. 2nd workshop on BEMC (1996)

    Google Scholar 

  6. Callard, R., George, A.J., Stark, J.: Cytokines, chaos, and complexity. Immunity 11, 507–513 (1999)

    Article  Google Scholar 

  7. Coffin, J.M.: HIV population dynamics in vivo: implications for genetic variation, pathogensis, and therapy. Science 267, 483–489 (1995)

    Article  Google Scholar 

  8. De Boer, R., Perelson, A.S.: Target cell limited and immune control models of HIV infection: a comparison. J. Theor. Biol. 190, 201–214 (1998)

    Article  Google Scholar 

  9. De Boer, R.J., Perelson, A.S.: T cell repertoires and competitive exclusion. J. Theor. Biol. 169, 375–390 (1994)

    Article  Google Scholar 

  10. De Castro, L.N., Timmis, J.: Artificial Immune Systems: A New Computational Intelligence Approach. Springer, Heidelberg (2002)

    MATH  Google Scholar 

  11. Essunger, P., Perelson, A.S.: Modeling HIV infection of CD4+ T-cell subpopulations. J. Theor. Biol. 179, 367–391 (1994)

    Article  Google Scholar 

  12. Fauci, A.S., Chun, T.-W.: Latent reservoirs of HIV: obstacles to the eradication of virus. Proc. Natl. Acad. Sci. USA 96, 10958–10961 (1999)

    Article  Google Scholar 

  13. Gougeon, M.-L.: Apoptosis as an HIV strategy to escape immune attack. Nature Reviews Immunology 3, 392–404 (2003)

    Article  Google Scholar 

  14. Grilo, A., Caetano, A., Rosa, A.: Immune System Simulation through a Complex Adaptive System Model. In: Proceeding of the 3rd Workshop on Genetic Algorithms and Artificial Life (1999)

    Google Scholar 

  15. Guo, Z., Han, H.K., Tay, J.C.: Sufficiency Verification of HIV-1 Pathogenesis based on Multi-Agent Simulation. In: GECCO 2005, Washington D.C. (2005)

    Google Scholar 

  16. Heinkelein, M., Sopper, S., Jassoy, C.: Contact of human immunodeficiency virus type 1-infected and uninfected CD4+ T lymphocytes is highly cytolytic for both cells. Journal of Virology 69, 6925–6931 (1995)

    Google Scholar 

  17. Hershberg, U., Louzoun, Y., Atlan, H., Solomon, S.: HIV time hierarchy: winning the war while, loosing all the battles. Physica A 289, 178–190 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  18. Ho, D.D., Neumann, A.U., Perelson, A.S., Chen, W., Leonard, J.M., Markowitz, M.: Rapid turnover of plasma virions and CD4 lymphocytes in HIV-1 infection. Nature 373, 123–126 (1995)

    Article  Google Scholar 

  19. Jacob, C., Litorco, J., Lee, L.: Immunity Through Swarms: Agent-Based Simulations of the Human Immmune System. In: 3rd International Conference on Artificial Immune Systems (2004)

    Google Scholar 

  20. Janeway, C.A., Travers, P., Walport, M., Shlomchik, M.: Immunobiology: The immune system in health & disease. Garland Science Publishing (2001)

    Google Scholar 

  21. Johnson, G.B.: The Living World, 2nd edn. Mc Graw Hill, New York (2000)

    Google Scholar 

  22. Klein, J.: BREVE: a 3D simulation enviornment for the simulation of decentralized systems and artificial life. In: Proceedings of ARtificial Life VIII, the 8th International Conference on the Simulation and Synthesis of Living Systems (2002)

    Google Scholar 

  23. Lagreca, M.C., de Almeida, R.M.C., Zorzenon dos Santos, R.M.: A dynamical model for the immune repertoire. Physica A 289, 191–207 (2001)

    Article  MATH  Google Scholar 

  24. Louzoun, Y., Solomon, S., Atlan, H., Cohen, I.R.: Modeling complexity in biology. Physica A 297, 242–252 (2001)

    Article  MATH  Google Scholar 

  25. McCune, J.M.: The dynamics of CD4 +  T-cell depletion in HIV disease. Nature 410, 974–979 (2001)

    Article  Google Scholar 

  26. Nowak, M.A., McMichael, A.J.: How HIV defeats the immune system. Scientific American 273, 58–65 (1995)

    Article  Google Scholar 

  27. Nowak, M.A., Anderson, R.M., McLean, A.R., Wolfs, T.F.W., Goudsmit, J., May, R.M.: Antigenic diversity thresholds and the development of AIDS. Science 254, 963–969 (1991)

    Article  Google Scholar 

  28. Nowak, M.A., May, R.M., Anderson, R.M.: The evolutionary dynamics of HIV-1 quasispecies and the development of immunodeficiency disease. AIDS 4, 1095–1103 (1990)

    Article  Google Scholar 

  29. Perelson, A.S.: Immunology for physicists. Reviews of Modern Physics 69, 1219–1267 (1997)

    Article  Google Scholar 

  30. Perelson, A.S.: Modelling viral and immune system dynamics. Nature Reviews Immunology 2, 28–36 (2002)

    Article  Google Scholar 

  31. Perelson, A.S., Essunger, P., Cao, Y., Vesanen, M., Hurly, A., Saksela, K., Markowitz, M., Ho, D.D.: Decay characteristics of HIV-1-infected compartments during combination therapy. Nature 387, 188–191 (1997)

    Article  Google Scholar 

  32. Perelson, A.S., Nelson, P.W.: Mathematical Analysis of HIV-1 Dynamics in Vivo. SIAM Review 41, 3–44 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  33. Perelson, A.S., Neumann, A.U., Markowitz, M., Leonard, J.M., Ho, D.D.: HIV-1 Dynamics in vivo: virion clearance rate, infected cell life-span, and viral generation time. Science 271, 1582–1586 (1996)

    Article  Google Scholar 

  34. Perelson, A.S., Oster, G.F.: Theoretical studies of clonal selection: minimal antibody repertoire size and reliability of self-non-self discrimination. J. Theor. Biol. 81, 645–670 (1979)

    Article  MathSciNet  Google Scholar 

  35. Phillips, A.N.: Reduction of HIV concentration during acute infection: independence from a specific immune response. Science 271, 497–499 (1996)

    Article  Google Scholar 

  36. Rowland-Jones, S.L.: AIDS pathogenesis: what have two decades of HIV research taught us? Nature Reviews Immunology 3, 343–348 (2003)

    Article  Google Scholar 

  37. Selliah, N., Finkel, T.H.: Biochemical mechanisms of HIV induced T cell apoptosis. Cell Death and Differentiation 8, 127–136 (2001)

    Article  Google Scholar 

  38. Sieburg, H.B., McCutchan, J.A., Clay, O.K., Cabalerro, L., Ostlund, J.J.: Simulation of HIV infection in artificial immune systems. Physica D 45, 208–227 (1990)

    Article  MATH  Google Scholar 

  39. Stafford, M.A., Corey, L., Cao, Y., Daar, E.S., Ho, D.D., Perelson, A.S.: Modeling plasma virus concentration during primary HIV infection. J. Theor. Biol. 203, 285–301 (2000)

    Article  Google Scholar 

  40. STELLA software. High Performance Systems, Inc. Home Page, http://www.hps-inc.com

  41. Stine, G.J.: AIDS Update. Prentice-Hall, Englewood Cliffs (1999)

    Google Scholar 

  42. Vensim. Ventana Systems. Ventana Systems Home Page, http://www.vensim.com

  43. Wei, X., Ghosh, S.K., Taylor, M.E., Johnson, V.A., Emini, E.A., Deutsch, P., Lifson, J.D., Bonhoeffer, S., Nowak, M.A., Hahn, B.H., Saag, M.S., Shaw, G.M.: Viral dynamics in human immunodeficiency virus type 1 infection. Nature 373, 117–122 (1995)

    Article  Google Scholar 

  44. Wein, L.M., D’Amato, R.M., Perelson, A.S.: Mathematical analysis of antiretroviral therapy aimed at HIV-1 eradication or maintenance of low viral loads. J. Theor. Biol. 192, 81–98 (1998)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Guo, Z., Tay, J.C. (2005). A Comparative Study on Modeling Strategies for Immune System Dynamics Under HIV-1 Infection. In: Jacob, C., Pilat, M.L., Bentley, P.J., Timmis, J.I. (eds) Artificial Immune Systems. ICARIS 2005. Lecture Notes in Computer Science, vol 3627. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11536444_17

Download citation

  • DOI: https://doi.org/10.1007/11536444_17

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-28175-7

  • Online ISBN: 978-3-540-31875-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics