Skip to main content

Deriving a Stationary Dynamic Bayesian Network from a Logic Program with Recursive Loops

  • Conference paper
Inductive Logic Programming (ILP 2005)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 3625))

Included in the following conference series:

  • 553 Accesses

Abstract

Recursive loops in a logic program present a challenging problem to the PLP framework. On the one hand, they loop forever so that the PLP backward-chaining inferences would never stop. On the other hand, they generate cyclic influences, which are disallowed in Bayesian networks. Therefore, in existing PLP approaches logic programs with recursive loops are considered to be problematic and thus are excluded. In this paper, we propose an approach that makes use of recursive loops to build a stationary dynamic Bayesian network. Our work stems from an observation that recursive loops in a logic program imply a time sequence and thus can be used to model a stationary dynamic Bayesian network without using explicit time parameters. We introduce a Bayesian knowledge base with logic clauses of the form AA 1,...,A l , true, Context, Types, which naturally represents the knowledge that the A i s have direct influences on A in the context Context under the type constraints Types. We then use the well-founded model of a logic program to define the direct influence relation and apply SLG-resolution to compute the space of random variables together with their parental connections. We introduce a novel notion of influence clauses, based on which a declarative semantics for a Bayesian knowledge base is established and algorithms for building a two-slice dynamic Bayesian network from a logic program are developed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Apt, K.R., Bezem, M.: Acyclic programs. New Generation Computing 29(3), 335–363 (1991)

    Article  Google Scholar 

  2. Bacchus, F.: Using first-order probability logic for the construction of Bayesian networks. In: Proc. of the Ninth Conference on Uncertainty in Artificial Intelligence, pp. 219–226 (1994)

    Google Scholar 

  3. Breese, J.S.: Construction of belief and decision networks. Computational Intelligence 8(4), 624–647 (1992)

    Article  Google Scholar 

  4. Chen, W.D., Swift, T., Warren, D.S.: Efficient top-down computation of queries under the well-founded semantics. Journal of Logic Programming 24(3), 161–199 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  5. Cussens, J.: Stochastic logic programs: sampling, inference and applications. In: Proc. of The Sixteenth Annual Conference on Uncertainty in Artificail Intelligence, pp. 115–122 (2000)

    Google Scholar 

  6. De Raedt, L., Kersting, K.: Probabilistic logic learning. SIGKDD Explorations 5(1), 31–48 (2003)

    Article  Google Scholar 

  7. Domingos, P., Richardson, M.: Markov logic: a unifying framework for statistical relational learning. In: Proc. of the ICML 2004 Workshop on Statistical Relational Learning and its Connections to Other Fields, Banff, Canada, pp. 49–54 (2004)

    Google Scholar 

  8. Fabian, I., Lambert, D.A.: First-order Bayesian reasoning. In: Antoniou, G., Slaney, J.K. (eds.) Canadian AI 1998. LNCS (LNAI), vol. 1502, pp. 131–142. Springer, Heidelberg (1998)

    Chapter  Google Scholar 

  9. Fierens, D., Blockeel, H., Ramon, J., Bruynooghe, M.: Logical Bayesian networks. In: 3rd Workshop on Multi-Relational Data Mining, Seattle, USA (2005)

    Google Scholar 

  10. Getoor, L.: Learning Statistical Models from Relational Data, Ph.D. thesis, Stanford University (2001)

    Google Scholar 

  11. Glesner, S., Koller, D.: Constructing flexible dynamic belief networks from first-order probabilistic knowledge bases. In: Froidevaux, C., Kohlas, J. (eds.) Proceedings of the European Conference on Symbolic and Quantitative Approaches to Reasoning under Uncertainty, Fribourg, Switzerland, July 1995, pp. 217–226 (1995)

    Google Scholar 

  12. Goldman, R., Charniak, E.: A language for construction of belief networks. IEEE Transactions on Pattern Analysis and Machine Intelligence 15(3), 196–208 (1993)

    Article  Google Scholar 

  13. Jaeger, M.: Relational Bayesian networks. In: Proc. of The Thirteenth Annual Conference on Uncertainty in Artificail Intelligence, pp. 266–273 (1997)

    Google Scholar 

  14. Kanazawa, K., Koller, D., Russell, S.: Stochastic simulation algorithms for dynamic probabilistic networks. In: Proc. of the Eleventh Annual Conference on Uncertainty in Artificail Intelligence (1995)

    Google Scholar 

  15. Kersting, K., De Raedt, L.: Bayesian logic programs. In: Cussens, J., Frisch, A. (eds.) Work-in-Progress Reports of the Tenth International Conference on Inductive Logic Programming, London,U.K (2000) (A full version: Technical Report 151, University of Freiburg Institute for Computer Science)

    Google Scholar 

  16. Lloyd, J.W.: Foundations of Logic Programming, 2nd edn. Springer, Berlin (1987)

    MATH  Google Scholar 

  17. Muggleton, S.: Stochastic logic programs. In: Advances in Inductive Logic Programming. IOS Press, Amsterdam (1996)

    Google Scholar 

  18. Ngo, L., Haddawy, P.: Answering queries from context-sensitive probabilistic knowledge bases. Theoretical Computer Science 171, 147–177 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  19. Pearl, J.: Probabilistic Resoning in Intelligent Systems: Networks of Plausible inference. Morgan Kaufmann, San Francisco (1988)

    Google Scholar 

  20. Pfeffer, A., Koller, D.: Semantics and inference for recursive probability models. In: Proc. of the Seventeenth National Conference on Artificial Intelligence, pp. 538–544. AAAI Press, Menlo Park (2000)

    Google Scholar 

  21. Poole, D.: Probabilistic Horn abduction and Bayesian networks. Artificial Intelligence 64(1), 81–129 (1993)

    Article  MATH  Google Scholar 

  22. Russell, S., Norvig, P.: Artificial Intelligence: A Modern Approach. Prentice-Hall, Englewood Cliffs (1995)

    MATH  Google Scholar 

  23. Sagonas, K., Swift, T., Warren, D.S., Freire, J., Rao, P.: The XSB Programmer’s Manual (Version 1.8). Department of Computer Science, SUNY at Stony Brook, Available from http://www.cs.sunysb.edu/~sbprolog/xsb-page.html

  24. Sato, T., Kameya, Y.: Parameter learning of logic programs for symbolic-statistical modeling. Journal of Artificial Intelligence Research 15, 391–454 (2001)

    MATH  MathSciNet  Google Scholar 

  25. Shen, Y.D., You, J.H., Yuan, L.Y.: Enhancing global SLS-resolution with loop cutting and tabling mechanisms. Theoretical Computer Science 328(3), 271–287 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  26. Taskar, B., Abeel, P., Koller, D.: Discriminative probabilistic models for relational data. In: Proc. of the Eighteenth Conf. on Uncertainty in Artificial Intelligence, Edmonton, Canada, pp. 485–492 (2002)

    Google Scholar 

  27. Ullman, J.D.: Database and Knowledge-Base Systems, vol. I and II. Computer Science Press, Rockville (1988)

    Google Scholar 

  28. Van Gelder, A.: Negation as failure using tight derivations for general logic programs. Journal of Logic Programming 6(1&2), 109–133 (1989)

    Article  MATH  MathSciNet  Google Scholar 

  29. Van Gelder, A., Ross, K., Schlipf, J.: The well-founded semantics for general logic programs. J. ACM 38(3), 620–650 (1991)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Shen, YD., Yang, Q. (2005). Deriving a Stationary Dynamic Bayesian Network from a Logic Program with Recursive Loops. In: Kramer, S., Pfahringer, B. (eds) Inductive Logic Programming. ILP 2005. Lecture Notes in Computer Science(), vol 3625. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11536314_20

Download citation

  • DOI: https://doi.org/10.1007/11536314_20

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-28177-1

  • Online ISBN: 978-3-540-31851-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics