Unconditional Characterizations of Non-interactive Zero-Knowledge

  • Rafael Pass
  • abhi shelat
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3621)


Non-interactive zero-knowledge (NIZK) proofs have been investigated in two models: the Public Parameter model and the Secret Parameter model. In the former, a public string is “ideally” chosen according to some efficiently samplable distribution and made available to both the Prover and Verifier. In the latter, the parties instead obtain correlated (possibly different) private strings. To add further choice, the definition of zero-knowledge in these settings can either be non-adaptive or adaptive.

In this paper, we obtain several unconditional characterizations of computational, statistical and perfect NIZK for all combinations of these settings. Specifically, we show:

In the secret parameter model, NIZK = NISZK = NIPZK = AM.

In the public parameter model,

– for the non-adaptive definition, NISZKAMcoAM,

– for the adaptive one, it also holds that NISZKBPP,

– for computational NIZK for “hard” languages, one-way functions are both necessary and sufficient.

From our last result, we arrive at the following unconditional characterization of computational NIZK in the public parameter model (which complements well-known results for interactive zero-knowledge):

Either NIZK proofs exist only for “easy” languages (i.e., languages that are not hard-on-average), or they exist for all of AM (i.e., all languages which admit non-interactive proofs).


Proof System Oblivious Transfer Public Parameter Prover Algorithm Proof String 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. [AH91]
    Aiello, W., Håstad, J.: Statistical zero-knowledge languages can be recognized in two rounds. J. Comput. Syst. Sci. 42, 327–345 (1991)zbMATHCrossRefGoogle Scholar
  2. [Aum74]
    Aumann, R.: Subjectivity and correlation in randomized strategies. J. Math. Econ. 1, 67–96 (1974)zbMATHCrossRefMathSciNetGoogle Scholar
  3. [BM88]
    Babai, L., Moran, S.: Arthur-merlin games: A randomized proof system, and a hierarchy of complexity classes. J. Comput. Syst. Sci. 36(2), 254–276 (1988)zbMATHCrossRefMathSciNetGoogle Scholar
  4. [BDMP91]
    Blum, M., De Santis, A., Micali, S., Persiano, G.: Noninteractive zero-knowledge. SIAM J. Computing 20(6), 1084–1118 (1991)zbMATHCrossRefGoogle Scholar
  5. [BFM88]
    Blum, M., Feldman, P., Micali, S.: Non-interactive zero-knowledge and its applications. In: STOC 1988, pp. 103–112 (1988)Google Scholar
  6. [BHZ87]
    Boppana, R., Håstad, J., Zachos, S.: Does co-NP have short interactive proofs? Inf. Process. Lett. 25(2), 127–132 (1987)zbMATHCrossRefGoogle Scholar
  7. [CLOS02]
    Canetti, R., Lindell, Y., Ostrovsky, R., Sahai, A.: Universally composable two-party and multi-party secure computation. In: STOC 2002, pp. 494–503 (2002)Google Scholar
  8. [CD04]
    Cramer, R., Damgård, I.: Secret-key zero-knowledge and non-interactive verifiable exponentiation. In: Naor, M. (ed.) TCC 2004. LNCS, vol. 2951, pp. 223–237. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  9. [Dam93]
    Damgård, I.: Non-interactive circuit based proofs and non-interactive perfect zero knowledge with preprocessing. In: Rueppel, R.A. (ed.) EUROCRYPT 1992. LNCS, vol. 658, pp. 341–355. Springer, Heidelberg (1993)CrossRefGoogle Scholar
  10. [Dam00]
    Damgård, I.: Efficient concurrent zero-knowledge in the auxiliary string model. In: Preneel, B. (ed.) EUROCRYPT 2000. LNCS, vol. 1807, pp. 418–430. Springer, Heidelberg (2000)CrossRefGoogle Scholar
  11. [DFN05]
    Damgård, I., Fazio, N., Nicolosi, A.: Secret-key zero-knowledge protocols for NP and applications to threshold cryptography. Manuscript (2005)Google Scholar
  12. [DCO+01]
    De Santis, A., Di Crescenzo, G., Ostrovsky, R., Persiano, G., Sahai, A.: Robust non-interactive zero knowledge. In: Kilian, J. (ed.) CRYPTO 2001. LNCS, vol. 2139, pp. 566–598. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  13. [DCPY98]
    De Santis, A., Di Crescenzo, G., Persiano, G., Yung, M.: Image density is complete for non-interactive-SZK. In: Larsen, K.G., Skyum, S., Winskel, G. (eds.) ICALP 1998. LNCS, vol. 1443, pp. 784–795. Springer, Heidelberg (1998)CrossRefGoogle Scholar
  14. [DMP88]
    De Santis, A., Micali, S., Persiano, G.: Non-interactive zero-knowledge with preprocessing. In: Goldwasser, S. (ed.) CRYPTO 1988. LNCS, vol. 403, pp. 269–282. Springer, Heidelberg (1988)Google Scholar
  15. [FLS90]
    Feige, U., Lapidot, D., Shamir, A.: Multiple non-interactive zero knowledge proofs based on a single random string. In: FOCS 1990, pp. 308–317 (1990)Google Scholar
  16. [GMR98]
    Gennaro, R., Micciancio, D., Rabin, T.: An efficient non-interactive statistical zero-knowledge proof system for quasi-safe prime products. In: CCS 1998, pp. 67–72 (1998)Google Scholar
  17. [Gol90]
    Goldreich, O.: A note on computational indistinguishability. Inf. Process. Lett. 34(6), 277–281 (1990)zbMATHCrossRefMathSciNetGoogle Scholar
  18. [Gol01]
    Goldreich, O.: Foundations of Cryptography, vol. I (2001)Google Scholar
  19. [Gol04]
    Goldreich, O.: Foundations of Cryptography, vol. II (2004)Google Scholar
  20. [GO94]
    Goldreich, O., Oren, Y.: Definitions and properties of zero-knowledge proof systems. J. Crypt. 7(1), 1–32 (1994)zbMATHCrossRefMathSciNetGoogle Scholar
  21. [GSV99]
    Goldreich, O., Sahai, A., Vadhan, S.: Can statistical zero knowledge be made non-interactive? or on the relationship of SZK and NISZK. In: Wiener, M. (ed.) CRYPTO 1999. LNCS, vol. 1666, pp. 467–484. Springer, Heidelberg (1999)Google Scholar
  22. [GV98]
    Goldreich, O., Vadhan, S.: Comparing entropies in statistical zero-knowledge with applications to the structure of SZK. In: Computational Complexity (1998)Google Scholar
  23. [GMR85]
    Goldwasser, S., Micali, S., Rackoff, C.: The knowledge complexity of interactive proof-systems. In: STOC 1985, pp. 291–304 (1985)Google Scholar
  24. [GS86]
    Goldwasser, S., Sipser, M.: Private coins versus public coins in interactive proof systems. In: STOC 1986, pp. 59–68 (1986)Google Scholar
  25. [HILL99]
    Håstad, J., Impagliazzo, R., Levin, L.A., Luby, M.: A pseudorandom generator from any one-way function. SIAM J. Comput. 28(4), 1364–1396 (1999)zbMATHCrossRefMathSciNetGoogle Scholar
  26. [Kil88]
    Kilian, J.: Founding cryptography on oblivious transfer. In: STOC 1988, pp. 20–31 (1988)Google Scholar
  27. [KMO89]
    Kilian, J., Micali, S., Ostrovsky, R.: Minimum resource zero-knowledge proofs. In: FOCS 1989, pp. 474–479 (1989)Google Scholar
  28. [KP98]
    Kilian, J., Petrank, E.: An efficient non-interactive zero-knowledge proof system for NP with general assumptions. J. Crypt. 11(1), 1–27 (1998)zbMATHCrossRefMathSciNetGoogle Scholar
  29. [Nao91]
    Naor, M.: Bit commitment using pseudorandomness. J. Crypt. 4(2), 151–158 (1991)zbMATHCrossRefGoogle Scholar
  30. [Oka96]
    Okamoto, T.: On relationships between statistical zero-knowledge proofs. In: STOC 1996, pp. 649–658 (1996)Google Scholar
  31. [OW93]
    Ostrovsky, R., Wigderson, A.: One-way fuctions are essential for non-trivial zero-knowledge. In: ISTCS, pp. 3–17 (1993)Google Scholar
  32. [SV03]
    Sahai, A., Vadhan, S.: A complete problem for statistical zero knowledge. J. ACM 50(2), 196–249 (2003)CrossRefMathSciNetGoogle Scholar
  33. [SMP87]
    De Santis, A., Micali, S., Persiano, G.: Non-interactive zero-knowledge proof systems. In: Pomerance, C. (ed.) CRYPTO 1987. LNCS, vol. 293, pp. 52–72. Springer, Heidelberg (1988)Google Scholar
  34. [Vad99]
    Vadhan, S.: A Study of Statistical Zero-Knowledge Proofs. PhD thesis, MIT (1999)Google Scholar
  35. [Vad04]
    Vadhan, S.: An unconditional study of computational zero knowledge. In: FOCS 2004, pp. 176–185 (2004)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2005

Authors and Affiliations

  • Rafael Pass
    • 1
  • abhi shelat
    • 2
  1. 1.MIT CSAIL 
  2. 2.IBM Zurich Research 

Personalised recommendations