Advertisement

Secure Communications over Insecure Channels Based on Short Authenticated Strings

  • Serge Vaudenay
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3621)

Abstract

We propose a way to establish peer-to-peer authenticated communications over an insecure channel by using an extra channel which can authenticate very short strings, e.g. 15 bits.We call this SAS-based authentication as for authentication based on Short Authenticated Strings. The extra channel uses a weak notion of authentication in which strings cannot be forged nor modified, but whose delivery can be maliciously stalled, canceled, or replayed. Our protocol is optimal and relies on an extractable or equivocable commitment scheme.

This approach offers an alternative (or complement) to public-key infrastructures, since we no longer need any central authority, and to password-based authenticated key exchange, since we no longer need to establish a confidential password. It can be used to establish secure associations in ad-hoc networks. Applications could be the authentication of a public key (e.g. for SSH or PGP) by users over the telephone, the user-aided pairing of wireless (e.g. Bluetooth) devices, or the restore of secure associations in a disaster case, namely when one remote peer had his long-term keys corrupted.

Keywords

Random Oracle Trusted Third Party Message Authentication Commitment Scheme Secure Association 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Digital Signature Standard (DSS). Federal Information Processing Standards publication #186-2. U.S. Department of Commerce, National Institute of Standards and Technology (2000)Google Scholar
  2. 2.
    Specification of the Bluetooth System. Core System Package, vol. 2. Bluetooth Specification version 1.2 (2003)Google Scholar
  3. 3.
    Abdalla, M., Fouque, P.-A., Pointcheval, D.: Password-Based Authenticated Key Exchange in the Three-Party Setting. In: Vaudenay, S. (ed.) PKC 2005. LNCS, vol. 3386, pp. 65–84. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  4. 4.
    Balfanz, D., Smeeters, D.K., Stewart, P., ChiWong, H.: Talking to Strangers: Authentication in Ad-Hoc Wireless Networks. In: Network and Distributed System Security Symposium Conference (NDSS 2002), San Diego, California, USA. The Internet Society (2002)Google Scholar
  5. 5.
    Bellare, M., Pointcheval, D., Rogaway, P.: Authenticated Key Exchange Secure against Dictionary Attacks. In: Preneel, B. (ed.) EUROCRYPT 2000. LNCS, vol. 1807, pp. 139–155. Springer, Heidelberg (2000)CrossRefGoogle Scholar
  6. 6.
    Bellare, M., Rogaway, P.: Entity Authentication and Key Distribution. In: Stinson, D.R. (ed.) CRYPTO 1993. LNCS, vol. 773, pp. 232–249. Springer, Heidelberg (1994)Google Scholar
  7. 7.
    Bellare, M., Rogaway, P.: Provably Secure Session Key Distribution: the Three Party Case. In: Proceedings of the 27th ACM Symposium on Theory of Computing, Las Vegas, Nevada, USA, pp. 57–66. ACM Press, New York (1995)Google Scholar
  8. 8.
    Bellovin, S.M., Merritt, M.: Encrypted Key Exchange: Password-Based Protocols Secure Against Dictionary Attacks. In: IEEE symposium on Research in Security and Privacy, Oakland, California, USA, pp. 72–84. IEEE Computer Society Press, Los Alamitos (1992)CrossRefGoogle Scholar
  9. 9.
    Bellovin, S.M., Merritt, M.: Augmented Encrypted Key Exchange. In: 1st ACM Conference on Computer and Communications Security, Fairfax, Virginia, USA, pp. 244–250. ACM Press, New York (1993)Google Scholar
  10. 10.
    Bennett, C.H., Brassard, G.: Quantum Cryptography: Public Key Distribution and Coin Tossing. In: Proc. IEEE International Conference on Computers, Systems, and Signal Processing, Bangalore, India, pp. 175–179. IEEE Press, Los Alamitos (1984)Google Scholar
  11. 11.
    Boneh, D.: The Decision Diffie-Hellman Problem. In: Buhler, J.P. (ed.) ANTS 1998. LNCS, vol. 1423, pp. 48–63. Springer, Heidelberg (1998)CrossRefGoogle Scholar
  12. 12.
    Boyd, C., Mathuria, A.: Protocols for Authentication and Key Establishment. In: Information Security and Cryptography. Springer, Heidelberg (2003)Google Scholar
  13. 13.
    Čagalj, M., Čapkun, S., Hubaux, J.-P.: Key Agreement in Peer-to-Peer Wireless Networks. To appear in the Proceedings of the IEEE (Fall 2005)Google Scholar
  14. 14.
    Cramer, R., Shoup, V.: Signature Schemes based on the Strong RSA Assumption. ACM Transactions on Information and System Security 3, 161–185 (2000)CrossRefGoogle Scholar
  15. 15.
    Di Crescenzo, G., Ishai, Y., Ostrovsky, R.: Non-Interactive and Non-Malleable Commitment. In: Proceedings of the 30th ACM Symposium on Theory of Computing, Dallas, Texas, USA, pp. 141–150. ACM Press, New York (1998)Google Scholar
  16. 16.
    Di Crescenzo, G., Katz, J., Ostrovsky, R., Smith, A.: Efficient and Non-Interactive Non- Malleable Commitments. In: Pfitzmann, B. (ed.) EUROCRYPT 2001. LNCS, vol. 2045, pp. 40–59. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  17. 17.
    Damgård, I., Groth, J.: Non-interactive and Reusable Non-malleable Commitment Schemes. In: Proceedings of the 35th ACM Symposium on Theory of Computing, San Diego, California, USA, pp. 426–437. ACM Press, New York (2003)Google Scholar
  18. 18.
    Diffie, W., Hellman, M.E.: New Directions in Cryptography. IEEE Transactions on Information Theory IT-22, 644–654 (1976)zbMATHCrossRefMathSciNetGoogle Scholar
  19. 19.
    Dierks, T., Allen, C.: The TLS Protocol Version 1.0. RFC 2246, standard tracks. The Internet Society (1999)Google Scholar
  20. 20.
    Dolev, D., Dwork, C., Naor, M.: Non-Malleable Cryptography. SIAM Journal of Computing 30, 391–437 (2000)zbMATHCrossRefMathSciNetGoogle Scholar
  21. 21.
    Gehrmann, C., Mitchell, C., Nyberg, K.: Manual Authentication for Wireless Devices. RSA Cryptobytes 7, 29–37 (2004)Google Scholar
  22. 22.
    Gehrmann, C., Nyberg, K.: Security in Personal Area Networks. In: Mitchell, C. (ed.) Security for Mobility, pp. 191–230. IEE (2004)Google Scholar
  23. 23.
    Haller, N.: The S/KEY One-Time Password System. RFC 1760 (1995)Google Scholar
  24. 24.
    Håstad, J., Impagliazzo, R., Levin, L., Luby, M.: A Pseudorandom Generator from any Oneway Function. SIAM Journal on Computing 4, 1364–1396 (1999)CrossRefGoogle Scholar
  25. 25.
    Hoepman, J.-H.: The Ephemeral Pairing Problem. In: Juels, A. (ed.) FC 2004. LNCS, vol. 3110, pp. 212–226. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  26. 26.
    Hoepman, J.-H.: Ephemeral Pairing on Anonymous Networks. In: Hutter, D., Ullmann, M. (eds.) SPC 2005. LNCS, vol. 3450, pp. 101–116. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  27. 27.
    Housley, R., Ford, W., Polk, W., Solo, D.: Internet X.509 Public Key Infrastructure Certificate and CRL Profile. Internet Standard. RFC 2459, The Internet Society (1999)Google Scholar
  28. 28.
    Jakobsson, M., Wetzel, S.: Security Weaknesses in Bluetooth. In: Naccache, D. (ed.) CT-RSA 2001. LNCS, vol. 2020, pp. 176–191. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  29. 29.
    Katz, J., Ostrovsky, R., Yung, M.: Efficient Password-Authenticated Key Exchange using Human-Memorable Passwords. In: Pfitzmann, B. (ed.) EUROCRYPT 2001. LNCS, vol. 2045, pp. 475–494. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  30. 30.
    Kohl, J., Neuman, C.: The Kerberos Network Authentication Service (V5). Internet standard. RFC 1510 (1993)Google Scholar
  31. 31.
    MacKenzie, P., Yang, K.: On Simulation-Sound Trapdoor Commitments. In: Cachin, C., Camenisch, J.L. (eds.) EUROCRYPT 2004. LNCS, vol. 3027, pp. 382–400. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  32. 32.
    Merkle, R.C.: Secure Communications over Insecure Channels. Communications of the ACM 21, 294–299 (1978)CrossRefGoogle Scholar
  33. 33.
    Mitchell, C., Ward, M., Wilson, P.: On Key Control in Key Agreement Protocols. Electronics Letters 34, 980–981 (1998)CrossRefGoogle Scholar
  34. 34.
    Needham, R.M., Schroeder, M.D.: Using Encryption for Authentication in Large Networks of Computers. Communications of the ACM 21, 993–999 (1978)zbMATHCrossRefGoogle Scholar
  35. 35.
    Nyberg, K.: IKE in Ad-hoc IP Networking. In: Castelluccia, C., Hartenstein, H., Paar, C., Westhoff, D. (eds.) ESAS 2004. LNCS, vol. 3313, pp. 139–151. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  36. 36.
    Pasini, S., Vaudenay, S.: Optimized Message Authentication Protocols (unpublished)Google Scholar
  37. 37.
    Pass, R.: On Deniability in the Common Reference String and Random Oracle Model. In: Boneh, D. (ed.) CRYPTO 2003. LNCS, vol. 2729, pp. 316–337. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  38. 38.
    Peyrin, T., Vaudenay, S.: The Pairing Problem with User Interaction. In: Security and Privacy in the Age of Ubiquitous Computing IFIP TC11 20th International Information Security Conference (SEC 2005), Chiba, Japan, pp. 251–265. Springer, Heidelberg (2005)Google Scholar
  39. 39.
    Rivest, R.L., Shamir, A., Adleman, L.M.: A Method for Obtaining Digital Signatures and Public-key Cryptosystem. Communications of the ACM 21, 120–126 (1978)zbMATHCrossRefMathSciNetGoogle Scholar
  40. 40.
    Stajano, F., Anderson, R.: The Resurrecting Duckling: Security Issues for Ad-hoc Wireless Networks. In: Malcolm, J.A., Christianson, B., Crispo, B., Roe, M. (eds.) Security Protocols 1999. LNCS, vol. 1796, pp. 172–194. Springer, Heidelberg (2000)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2005

Authors and Affiliations

  • Serge Vaudenay
    • 1
  1. 1.EPFLLausanneSwitzerland

Personalised recommendations