Privacy-Preserving Set Operations

  • Lea Kissner
  • Dawn Song
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3621)

Abstract

In many important applications, a collection of mutually distrustful parties must perform private computation over multisets. Each party’s input to the function is his private input multiset. In order to protect these private sets, the players perform privacy-preserving computation; that is, no party learns more information about other parties’ private input sets than what can be deduced from the result. In this paper, we propose efficient techniques for privacy-preserving operations on multisets. By building a framework of multiset operations, employing the mathematical properties of polynomials, we design efficient, secure, and composable methods to enable privacy-preserving computation of the union, intersection, and element reduction operations. We apply these techniques to a wide range of practical problems, achieving more efficient results than those of previous work.

References

  1. 1.
    Ben-Or, M., Goldwasser, S., Widgerson, A.: Completeness theorems for non-cryptographic fault-tolerant distributed computation. In: Proc. of STOC (1988)Google Scholar
  2. 2.
    Boudot, F., Schoenmakers, B., Traore, J.: A fair and efficient solution to the socialist millionaires’ problem. Discrete Applied Mathematics 111, 77–85 (2001)CrossRefMathSciNetGoogle Scholar
  3. 3.
    Camenisch, J.: Proof systems for general statements about discrete logarithms. Technical Report 260, Dept. of Computer Science, ETH Zurich (March 1997)Google Scholar
  4. 4.
    Chaum, D.: Untraceable electronic mail, return addresses, and digital pseudonyms. Communications of the ACM 24, 84–88 (1981)CrossRefGoogle Scholar
  5. 5.
    Chaum, D., Evertse, J.-H., van de Graaf, J., Peralta, R.: Demonstrating possession of a discrete log without revealing it. In: Odlyzko, A.M. (ed.) CRYPTO 1986. LNCS, vol. 263, pp. 200–212. Springer, Heidelberg (1987)Google Scholar
  6. 6.
    Cramer, R., Damgård, I.B., Nielsen, J.B.: Multiparty computation from threshold homomorphic encryption. In: Pfitzmann, B. (ed.) EUROCRYPT 2001. LNCS, vol. 2045, pp. 280–299. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  7. 7.
    Cramer, R., Damgård, I.B., Maurer, U.M.: General secure multi-party computation from any linear secret sharing scheme. In: Preneel, B. (ed.) EUROCRYPT 2000. LNCS, vol. 1807, p. 316. Springer, Heidelberg (2000)CrossRefGoogle Scholar
  8. 8.
    Desmedt, Y., Kurosawa, K.: How to break a practical mix and design a new one. In: Preneel, B. (ed.) EUROCRYPT 2000. LNCS, vol. 1807, pp. 557–572. Springer, Heidelberg (2000)CrossRefGoogle Scholar
  9. 9.
    Fagin, R., Naor, M., Winkler, P.: Comparing information without leaking it. Communications of the ACM 39, 77–85 (1996)CrossRefGoogle Scholar
  10. 10.
    Fouque, P., Poupard, G., Stern, J.: Sharing decryption in the context of voting of lotteries. In: Proc. of Financial Cryptography (2000)Google Scholar
  11. 11.
    Fouque, P.-A., Pointcheval, D.: Threshold cryptosystems secure against chosen-ciphertext attacks. In: Boyd, C. (ed.) ASIACRYPT 2001. LNCS, vol. 2248, pp. 573–584. Springer, Heidelberg (2001)Google Scholar
  12. 12.
    Freedman, M., Nissim, K., Pinkas, B.: Efficient private matching and set intersection. In: Cachin, C., Camenisch, J.L. (eds.) EUROCRYPT 2004. LNCS, vol. 3027, pp. 1–19. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  13. 13.
    Furukawa, J., Sako, K.: An efficient scheme for proving a shuffle. In: Kilian, J. (ed.) CRYPTO 2001. LNCS, vol. 2139, pp. 368–387. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  14. 14.
    Gennaro, R., Shoup, V.: Securing threshold cryptosystems against chosen ciphertext attack. Journal of Cryptology 15, 75–96 (2002)MATHMathSciNetGoogle Scholar
  15. 15.
    Goldreich, O.: The foundations of cryptography – vol 2, http://www.wisdom.weizmann.ac.il/~oded/foc-vol2.html
  16. 16.
    Goldwasser, S., Micali, S.: Probabilistic encryption. Journal of Computer and Systems Science 28, 270–299 (1984)MATHCrossRefMathSciNetGoogle Scholar
  17. 17.
    Jakobsson, M.: A practical mix. In: Nyberg, K. (ed.) EUROCRYPT 1998. LNCS, vol. 1403, pp. 448–461. Springer, Heidelberg (1998)CrossRefGoogle Scholar
  18. 18.
    Kissner, L., Song, D.: Private and threshold set-intersection. Technical Report CMU-CS-05-113, Carnegie Mellon University (February 2005)Google Scholar
  19. 19.
    Lipmaa, H.: Verifiable homomorphic oblivious transfer and private equality test. In: Laih, C.-S. (ed.) ASIACRYPT 2003. LNCS, vol. 2894, pp. 416–433. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  20. 20.
    Menezes, A.J., van Oorschot, P.C., Vanstone, S.A.: Handbook of Applied Cryptography. CRC Press, Boca Raton (1996)CrossRefGoogle Scholar
  21. 21.
    Naor, M., Pinkas, B.: Oblivious transfer and polynomial evaluation. In: Proc. ACM Symposium on Theory of Computing, pp. 245–254 (1999)Google Scholar
  22. 22.
    Neff, A.: A verifiable secret shuffle and its application to e-voting. In: ACM CCS, pp. 116–125 (2001)Google Scholar
  23. 23.
    Paillier, P.: Public-key cryptosystems based on composite degree residuosity classes. In: Proc. of Asiacrypt, pp. 573–584 (2000)Google Scholar
  24. 24.
    Shoup, V.: A computational introduction to number theory and algebra, http://shoup.net/ntb/
  25. 25.
    Yao, A.C.-C.: Protocols for secure computations. In: Proc. of FOCS (1982)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2005

Authors and Affiliations

  • Lea Kissner
    • 1
  • Dawn Song
    • 1
  1. 1.Carnegie Mellon UniversityPittsburghUSA

Personalised recommendations