Advertisement

Private Searching on Streaming Data

  • Rafail Ostrovsky
  • William E. SkeithIII
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3621)

Abstract

In this paper, we consider the problem of private searching on streaming data. We show that in this model we can efficiently implement searching for documents under a secret criteria (such as presence or absence of a hidden combination of hidden keywords) under various cryptographic assumptions. Our results can be viewed in a variety of ways: as a generalization of the notion of a Private Information Retrieval (to the more general queries and to a streaming environment as well as to public-key program obfuscation); as positive results on privacy-preserving datamining; and as a delegation of hidden program computation to other machines.

Keywords

Code Obfuscation Crypto-computing Software security Database security Public-key Encryption with special properties Private Information Retrieval Privacy-Preserving Keyword Search Secure Algorithms for Streaming Data Privacy-Preserving Datamining Secure Delegation of Computation Searching with Privacy Mobile code 

References

  1. 1.
    Barak, B., Goldreich, O., Impagliazzo, R., Rudich, S., Sahai, A., Vadhan, S., Yang, K.: On the (im)possibility of software obfuscation. In: Kilian, J. (ed.) CRYPTO 2001. LNCS, vol. 2139, pp. 1–18. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  2. 2.
    Boneh, D., Goh, E., Nissim, K.: Evaluating 2-DNF Formulas on Ciphertexts. In: TCC 2005, pp. 325–341 (2005)Google Scholar
  3. 3.
    Boneh, D., Crescenzo, G., Ostrovsky, R., Persiano, G.: Public Key Encryption with Keyword Search. In: Cachin, C., Camenisch, J.L. (eds.) EUROCRYPT 2004. LNCS, vol. 3027, pp. 506–522. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  4. 4.
    Chang, Y.C.: Single Database Private Information Retrieval with Logarithmic Communication. In: Wang, H., Pieprzyk, J., Varadharajan, V. (eds.) ACISP 2004. LNCS, vol. 3108, pp. 50–61. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  5. 5.
    Cachin, C., Micali, S., Stadler, M.: Computationally private information retrieval with polylogarithmic communication. In: Stern, J. (ed.) EUROCRYPT 1999. LNCS, vol. 1592, pp. 402–414. Springer, Heidelberg (1999)Google Scholar
  6. 6.
    Chor, B., Gilboa, N., Naor, M.: Private Information Retrieval by Keywords in Technical Report TR CS0917, Department of Computer Science, Technion (1998)Google Scholar
  7. 7.
    Chor, B., Goldreich, O., Kushilevitz, E., Sudan, M.: Private information retrieval. In: Proc. of the 36th Annu. IEEE Symp. on Foundations of Computer Science, pp. 41–51 (1995); Journal version: J. of the ACM 45, 965–981 (1998)Google Scholar
  8. 8.
    Di Crescenzo, G., Malkin, T., Ostrovsky, R.: Single-database private information retrieval implies oblivious transfer. In: Preneel, B. (ed.) EUROCRYPT 2000. LNCS, vol. 1807, p. 122. Springer, Heidelberg (2000)CrossRefGoogle Scholar
  9. 9.
    Damgård, I., Jurik, M.: A Generalisation, a Simplification and some Applications of Paillier’s Probabilistic Public-Key System. In: Public Key Cryptography, PKC 2001 (2001)Google Scholar
  10. 10.
    Freedman, M., Ishai, Y., Pinkas, B., Reingold, O.: Keyword Search and Oblivious Pseudorandom Functions. In: Kilian, J. (ed.) TCC 2005. LNCS, vol. 3378, pp. 303–324. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  11. 11.
    Goldwasser, S., Micali, S.: Probabilistic encryption. J. Comp. Sys. Sci. 28(1), 270–299 (1984)zbMATHCrossRefMathSciNetGoogle Scholar
  12. 12.
    Kurosawa, K., Ogata, W.: Oblivious Keyword Search. Journal of Complexity 20(2-3) (April/June 2004); Special issue on coding and cryptography, 356–371Google Scholar
  13. 13.
    Kushilevitz, E., Ostrovsky, R.: Replication is not needed: Single database, computationally-private information retrieval. In: Proc. of the 38th Annu. IEEE Symp. on Foundations of Computer Science, pp. 364–373 (1997)Google Scholar
  14. 14.
    Kushilevitz, E., Ostrovsky, R.: One-way Trapdoor Permutations are Sufficient for Non-Trivial Single-Database Computationally-Private Information Retrieval. In: Preneel, B. (ed.) EUROCRYPT 2000. LNCS, vol. 1807, p. 104. Springer, Heidelberg (2000)CrossRefGoogle Scholar
  15. 15.
    Lipmaa, H.: An Oblivious Transfer Protocol with Log-Squared Communication. IACR ePrint Cryptology Archive 2004/063 (2004)Google Scholar
  16. 16.
    Mehlhorn, K.: On the Program Size of Perfect and Universal Hash Functions. In: Proc. 23rd annual IEEE Symposium on Foundations of Computer Science, pp. 170–175 (1982)Google Scholar
  17. 17.
    Naor, M., Pinkas, B.: Oblivious transfer and polynomial evaluation. In: Proc. 31st STOC, pp. 245–254 (1999)Google Scholar
  18. 18.
    Paillier, P.: Public Key Cryptosystems based on Composite Degree Residue Classes. In: Stern, J. (ed.) EUROCRYPT 1999. LNCS, vol. 1592, pp. 223–238. Springer, Heidelberg (1999)Google Scholar
  19. 19.
    Sander, T., Young, A., Yung, M.: Non-Interactive Crypto Computing For NC1 FOCS 1999, pp. 554–567 (1999)Google Scholar
  20. 20.
    Stern, J.P.: A New and Efficient All or Nothing Disclosure of Secrets Protocol. In: Ohta, K., Pei, D. (eds.) ASIACRYPT 1998. LNCS, vol. 1514, pp. 357–371. Springer, Heidelberg (1998)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2005

Authors and Affiliations

  • Rafail Ostrovsky
    • 1
  • William E. SkeithIII
    • 2
  1. 1.UCLA Computer Science Department 
  2. 2.UCLA Department of Mathematics 

Personalised recommendations