Power Domination Problem in Graphs

  • Chung-Shou Liao
  • Der-Tsai Lee
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3595)

Abstract

To monitor an electric power system by placing as few phase measurement units (PMUs) as possible is closely related to the famous vertex cover problem and domination problem in graph theory. A set S is a power dominating set (PDS) of a graph G=(V,E), if every vertex and every edge in the system is observed following the observation rules of power system monitoring. The minimum cardinality of a PDS of a graph G is the power domination number γp(G). We show that the problem of finding the power domination number for split graphs, a subclass of chordal graphs, is NP-complete. In addition, we present a linear time algorithm for finding γp(G) of an interval graph G, if the interval ordering of the graph is provided, and show that the algorithm with O(nlog n) time complexity, is asymptotically optimal, if the interval ordering is not given, where n is the number of intervals. We also show that the same results hold for the class of proper circular-arc graphs.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Baldwin, T.L., Mili, L., Boisen Jr., M.B., Adapa, R.: Power system observability with minimal phasor measurement placewement. IEEE Trans. Power Syst. 8(2), 707–715 (1993)CrossRefGoogle Scholar
  2. 2.
    Ben-Or, M.: Lower bounds for algebraic computation trees. In: Proc. 15th Annual Symp. on theory of Computing, pp. 80–86 (1983)Google Scholar
  3. 3.
    Chang, G.J.: Algorithmic aspects of domination in graphs. In: Du, D.-Z., Pardalos, P.M. (eds.) Handbook of Combinatorial Optimization, vol. 3, pp. 339–405 (1998)Google Scholar
  4. 4.
    Golumbic, M.C.: Algorithmic Graph Theory and Perfect Graphs. Academic Press, Inc., London (1980)MATHGoogle Scholar
  5. 5.
    Haynes, T.W., Hedetniemi, S.M., Hedetniemi, S.T., Henning, M.A.: Domination in graphs applied to electric power networks. SIAM J. Discrete Math. 15(4), 519–529 (2002)MathSciNetCrossRefMATHGoogle Scholar
  6. 6.
    Haynes, T.W., Hedetniemi, S.T., Slater, P.J.: Domination in Graphs: The Theory. Marcel Dekker, Inc., New York (1998)MATHGoogle Scholar
  7. 7.
    Haynes, T.W., Hedetniemi, S.T., Slater, P.J.: Domination in Graphs: Advanced Topics. Marcel Dekker, Inc., New York (1998)MATHGoogle Scholar
  8. 8.
    Hsu, W.-L., Tsai, K.-H.: Linear time algorithms on circular-arc graphs. Infrom. Process. Letter. 40, 123–129 (1991)MathSciNetCrossRefMATHGoogle Scholar
  9. 9.
    Liao, C.S., Chang, G.J.: Algorithmic aspect of k-tuple domination in graphs. Taiwanese J. Math. 6, 415–420 (2002)MathSciNetMATHGoogle Scholar
  10. 10.
    Liao, C.S., Chang, G.J.: k-tuple domination in graphs, Inform. Process. Letter. 87, 45–50 (2003)MathSciNetCrossRefGoogle Scholar
  11. 11.
    Liao, C.S., Lee, D.T.: Power domination problem in graphs, manuscript, Institute of Information Science. Academia Sinica (April 2005)Google Scholar
  12. 12.
    Lee, D.T., Sarrafzadeh, M., Wu, Y.F.: Minimum cuts for circular-arc graphs. SIAM J. Comput. 19(6), 1041–1050 (1990)MathSciNetCrossRefMATHGoogle Scholar
  13. 13.
    Ramalingam, G., Pandu Rangan, C.: A unified approach to domination problems in interval graphs. Inform. Process. Letter 27, 271–274 (1988)MathSciNetCrossRefMATHGoogle Scholar
  14. 14.
    Tsai, K.H., Lee, D.T.: k-Best Cuts for Circular-Arc Graphs. Algorithmica 18, 198–216 (1997)MathSciNetCrossRefMATHGoogle Scholar
  15. 15.
    Zhao, M., Kang, L., Chang, G.J.: Power domination in graphs, manuscript, Personal CommunicationGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2005

Authors and Affiliations

  • Chung-Shou Liao
    • 1
  • Der-Tsai Lee
    • 1
  1. 1.Dept. of Computer Science and Information EngineeringNational Taiwan UniversityTaipeiTaiwan

Personalised recommendations