Skip to main content

Genome Rearrangements with Partially Ordered Chromosomes

  • Conference paper
Computing and Combinatorics (COCOON 2005)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 3595))

Included in the following conference series:

Abstract

Genomic maps often do not specify the order within some groups of two or more markers. The synthesis of a master map from several sources introduces additional order ambiguity due to markers missing from some sources. We represent each chromosome as a partial order, summarized by a directed acyclic graph (DAG), to account for poor resolution and of missing data. The genome rearrangement problem is then to infer a minimum number of translocations and reversals for transforming a set of linearizations, one for each chromosomal DAG in the genome of one species, to linearizations of the DAGs of another species. We augment each DAG to a directed graph (DG) in which all possible linearizations are embedded. The chromosomal DGs representing two genomes are combined to produce a single bicoloured graph. From this we extract a maximal decomposition into alternating coloured cycles, determining an optimal sequence of rearrangements. We test this approach on simulated partially ordered genomes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bader, D.A., Bernard, M.E., Moret, B.M.E., Yan, M.: A linear-time algorithm for computing inversion distance between signed permutations with an experimental study. Journal of Computational Biology 8, 483–491 (2001)

    Article  Google Scholar 

  2. Hannenhalli, S., Pevzner, P.A.: Transforming men into mice polynomial algorithm for genomic distance problem. In: Proceedings of the IEEE 36th Annual Symposium on Foundations of Computer Science, pp. 581–592 (1995)

    Google Scholar 

  3. Hannenhalli, S., Pevzner, P.A.: Transforming cabbage into turnip (polynomial algorithm for sorting signed permutations by reversals). Journal of the ACM 48, 1–27 (1999)

    Article  MathSciNet  Google Scholar 

  4. Tesler, G.: Efficient algorithms for multichromosomal genome rearrangements. Journal of Computer and System Sciences 65, 587–609 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  5. Zheng, C., Lenert, A., Sankoff, D.: Reversal distance for partially ordered genomes. In: Bioinformatics 21, supplementary issue, Proceedings of ISMB 2005 (2005)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Zheng, C., Sankoff, D. (2005). Genome Rearrangements with Partially Ordered Chromosomes. In: Wang, L. (eds) Computing and Combinatorics. COCOON 2005. Lecture Notes in Computer Science, vol 3595. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11533719_8

Download citation

  • DOI: https://doi.org/10.1007/11533719_8

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-28061-3

  • Online ISBN: 978-3-540-31806-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics