A Distributed Algorithm to Find Hamiltonian Cycles in \(\mathcal{G}(n, p)\) Random Graphs

  • Eythan Levy
  • Guy Louchard
  • Jordi Petit
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3405)


In this paper, we present a distributed algorithm to find Hamiltonian cycles in \(\mathcal{G}(n, p)\) graphs. The algorithm works in a synchronous distributed setting. It finds a Hamiltonian cycle in \(\mathcal{G}(n, p)\) with high probability when \(p=\omega(\sqrt{log n}/n^{1/4})\), and terminates in linear worst-case number of pulses, and in expected O(n 3/4 + ε ) pulses. The algorithm requires, in each node of the network, only O(n) space and O(n) internal instructions.


Time Complexity Random Graph Hamiltonian Cycle Initial Cycle Random Graph Model 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Angluin, D., Valiant, L.G.: Fast probabilistic algorithms for hamiltonian circuits and matchings. Journal of Computer and System Sciences 18, 155–193 (1979)zbMATHCrossRefMathSciNetGoogle Scholar
  2. 2.
    Awerbuch, B.: Optimal distributed algorithms for minimum-weight spanning tree, counting, leader election and related problems. In: Proc. 19th Symp. on Theory of Computing, pp. 230–240 (1987)Google Scholar
  3. 3.
    Bollobás, B.: Random graphs, 2nd edn. Academic Press, London (2001)zbMATHGoogle Scholar
  4. 4.
    Bollobás, B., Fenner, T.I., Frieze, A.M.: An algorithm for finding Hamilton paths and cycles in random graphs. Combinatorica 7(4), 327–341 (1987)zbMATHCrossRefMathSciNetGoogle Scholar
  5. 5.
    Díaz, J., Petit, J., Serna, M.: Faulty random geometric networks. Parallel Processing Letters 10(4), 343–357 (2001)CrossRefGoogle Scholar
  6. 6.
    Díaz, J., Petit, J., Serna, M.: A random graph model for optical smart dust networks. IEEE Transactions on Mobile Computing 2(3), 186–196 (2003)CrossRefGoogle Scholar
  7. 7.
    Faloutsos, M., Molle, M.: Optimal distributed algorithm for minimum spanning trees revisited. In: Symposium on Principles of Distributed Computing, pp. 231–237 (1995)Google Scholar
  8. 8.
    Flajolet, P., Sedgewick, R.: The average case analysis of algorithms: Saddle point asymptotics. Technical Report RR-2376, INRIA (1994)Google Scholar
  9. 9.
    Frieze, A.: Parallel algorithms for finding hamilton cycles in random graphs. Information Processing Letters 25, 111–117 (1987)zbMATHCrossRefMathSciNetGoogle Scholar
  10. 10.
    Gurevich, Y., Shelah, S.: Expected computation time for hamiltonian path problem. SIAM Journal on Computing 16(3), 486–502 (1987)zbMATHCrossRefMathSciNetGoogle Scholar
  11. 11.
    Hitczenko, P., Louchard, G.: Distinctness of compositions of an integer: A probabilistic analysis. Random Structures & Algorithms 19(3-4), 407–437 (2001)zbMATHCrossRefMathSciNetGoogle Scholar
  12. 12.
    Janson, S., Łuczak, T., Rucinski, A.: Random graphs. Wiley, New York (2000)zbMATHGoogle Scholar
  13. 13.
    Kleinberg, J.M., Kumar, R., Raghavan, P., Rajagopalan, S., Tomkins, A.S.: The Web as a graph: Measurements, models and methods. In: Asano, T., Imai, H., Lee, D.T., Nakano, S.-i., Tokuyama, T. (eds.) COCOON 1999. LNCS, vol. 1627, p. 1. Springer, Heidelberg (1999)CrossRefGoogle Scholar
  14. 14.
    Kumar, S.R., Raghavan, P., Rajagopalan, S., Tomkins, A.: Extracting large-scale knowledge bases from the web. VLDB Journal, 639–650 (1999)Google Scholar
  15. 15.
    Levy, E.: Distributed algorithms for finding hamilton cycles in faulty random geometric graphs. Mémoire de licence (master’s thesis), Université Libre de Bruxelles (2002),
  16. 16.
    Levy, E.: Analyse et conception d’un algorithme de cycle hamiltonien pour graphes aléatoires du type g(n,p). Mémoire de DEA, Ecole Polytechnique, Paris (2003),
  17. 17.
    MacKenzie, P.D., Stout, Q.F.: Optimal parallel construction of hamiltonian cycles and spanning trees in random graphs. In: ACM Symposium on Parallel Algorithms and Architectures, pp. 224–229 (1993)Google Scholar
  18. 18.
    Nikoletseas, S., Spirakis, P.: Efficient communication establishment in adverse communication environments. In: Rolim, J. (ed.) ICALP Workshops. Proceedings in Informatics, vol. 8, pp. 215–226. Carleton Scientific (2000)Google Scholar
  19. 19.
    Tel, G.: Introduction to Distributed Algorithms, 2nd edn. Cambridge University Press, Cambridge (2000)zbMATHGoogle Scholar
  20. 20.
    Thomason, A.G.: A simple linear expected time algorithm for finding a hamilton path. Discrete Mathematics 75, 373–379 (1989)zbMATHCrossRefMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2005

Authors and Affiliations

  • Eythan Levy
    • 1
  • Guy Louchard
    • 1
  • Jordi Petit
    • 2
  1. 1.Département d’InformatiqueUniversité Libre de BruxellesBruxellesBelgium
  2. 2.Departament de Llenguatges i Sistemes InformàticsUniversitat Politècnica de CatalunyaBarcelona, Catalonia

Personalised recommendations