Advertisement

Abstract

All information processing systems found in living organisms are based on chemical processes. Harnessing the power of chemistry for computing might lead to a new unifying paradigm coping with the rapidly increasing complexity and autonomy of computational systems. Chemical computing refers to computing with real molecules as well as to programming electronic devices using principles taken from chemistry. The paper focuses on the latter, called artificial chemical computing, and discusses several aspects of how the metaphor of chemistry can be employed to build technical information processing systems. In these systems, computation emerges out of an interplay of many decentralized relatively simple components analogized to molecules. Chemical programming encompassed then the definition of molecules, reaction rules, and the topology and dynamics of the reaction space. Due to the self-organizing nature of chemical dynamics, new programming methods are required. Potential approaches for chemical programming are discussed and a road map for developing chemical computing into a unifying and well grounded approach is sketched.

Keywords

Prime Number Reaction Vessel Reaction Network Reaction Rule Reactor Size 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Banâtre, J.P., Métayer, D.L.: The GAMMA model and its discipline of programming. Sci. Comput. Program. 15, 55–77 (1990)zbMATHCrossRefGoogle Scholar
  2. 2.
    Berry, G., Boudol, G.: The chemical abstract machine. Theor. Comput. Sci. 96, 217–248 (1992)zbMATHCrossRefMathSciNetGoogle Scholar
  3. 3.
    Adamatzky, A.: Universal dynamical computation in multidimensional excitable lattices. Int. J. Theor. Phys. 37, 3069–3108 (1998)zbMATHCrossRefMathSciNetGoogle Scholar
  4. 4.
    Dörner, D.: Bauplan einer Seele. Rowohlt, Reinbeck (1999)Google Scholar
  5. 5.
    Brooks, R.A.: Coherent behavior from many adaptive processes. In: Cliff, D., Husbands, P., Meyer, J.A., Wilson, S. (eds.) From animals to animats, vol. 3, pp. 22–29. MIT Press, Cambridge (1994)Google Scholar
  6. 6.
    Conrad, M.: Information processing in molecular systems. Currents in Modern Biology 5, 1–14 (1972)Google Scholar
  7. 7.
    Liberman, E.A.: Cell as a molecular computer (MCC). Biofizika 17, 932–943 (1972)Google Scholar
  8. 8.
    Liberman, E.A.: Analog-digital molecular cell. BioSytems 11, 111–124 (1979)CrossRefMathSciNetGoogle Scholar
  9. 9.
    Zauner, K.P.: Molecular information technology. Cr. Rev. Sol. State 30, 33–69 (2005)CrossRefGoogle Scholar
  10. 10.
    Tilden, W.A.: Introduction to the Study of Chemical Philosophy, 6th edn. Longmans, London (1888)Google Scholar
  11. 11.
    Küppers, B.O.: Information and the Origin of Life. MIT Press, Cambridge (1990)Google Scholar
  12. 12.
    Adleman, L.M.: Molecular computation of solutions to combinatorical problems. Science 266, 1021 (1994)CrossRefGoogle Scholar
  13. 13.
    Conrad, M., Zauner, K.P.: Conformation-driven computing: A comparison of designs based on DNA, RNA, and protein. Supramol. Sci. 5, 787–790 (1998)CrossRefGoogle Scholar
  14. 14.
    Hjelmfelt, A., Weinberger, E.D., Ross, J.: Chemical implementation of neural networks and turing machines. In: Proc. Natl. Acad. Sci., USA, vol. 88, pp. 10983–10987 (1991)Google Scholar
  15. 15.
    Bazhenov, V.Y., Soskin, M.S., Taranenko, V.B., Vasnetsov, M.V.: Biopolymers for real-time optical processing. In: Arsenault, H.H. (ed.) Optical Processing and Computing, San Diego, pp. 103–144. Academic Press, London (1989)Google Scholar
  16. 16.
    Pǎun, G.: Computing with membranes. J. Comput. Syst. Sci. 61, 108–143 (2000)CrossRefGoogle Scholar
  17. 17.
    Giavitto, J.L., Michel, O.: MGS: a rule-based programming language for complex objects and collections. In: van den Brand, M., Verma, R. (eds.) Electronic Notes in Theoretical Computer Science, vol. 59. Elsevier Science Publishers, Amsterdam (2001)Google Scholar
  18. 18.
    Laing, R.: Artificial organisms and autonomous cell rules. J. Cybernetics 2, 38–49 (1972)CrossRefGoogle Scholar
  19. 19.
    Suzuki, H., Ono, N., Yuta, K.: Several necessary conditions for the evolution of complex forms of life in an artificial environment. Artif. Life 9, 153–174 (2003)CrossRefGoogle Scholar
  20. 20.
    Banâtre, J.P., Métayer, D.L.: A new computational model and its discipline of programming. Technical report RR-0566, INRIA (1986)Google Scholar
  21. 21.
    Suzuki, Y., Tanaka, H.: Symbolic chemical system based on abstract rewriting and its behavior pattern. Artif. Life and Robotics 1, 211–219 (1997)CrossRefGoogle Scholar
  22. 22.
    Suzuki, Y., Tsumoto, S., Tanaka, H.: Analysis of cycles in symbolic chemical system based on abstract rewriting system on multisets. In: Langton, C.G., Shimohara, K. (eds.) Artificial Life V, Cambridge, MA, pp. 521–528. MIT Press, Cambridge (1996)Google Scholar
  23. 23.
    Cliff, D., Grand, S.: The creatures global digital ecosystem. Artif. Life 5, 77–94 (1999)CrossRefGoogle Scholar
  24. 24.
    Astor, J.C., Adami, C.: A developmental model for the evolution of artificial neural networks. Artif. Life 6, 189–218 (2000)CrossRefGoogle Scholar
  25. 25.
    Abelson, H., Allen, D., Coore, D., Hanson, C., Homsy, G., Knight, T.F., Nagpal, R., Rauch, E., Sussman, G.J., Weiss, R., Homsy, G.: Amorphous computing. Commun. ACM 43, 74–82 (2000)CrossRefGoogle Scholar
  26. 26.
    Husbands, P., Smith, T., Jakobi, N., O’Shea, M.: Better living through chemistry: Evolving gasnets for robot control. Connect. Sci. 10, 185–210 (1998)CrossRefGoogle Scholar
  27. 27.
    Seelig, L.A., Rössler, O.E.: A chemical reaction flip-flop with one unique switching input. Zeitschrift für Naturforschung 27b, 1441–1444 (1972)Google Scholar
  28. 28.
    Barrett, C.L., Mortveit, H.S., Reidys, C.M.: Elements of a theory of simulation II: sequential dynamical systems. Appl. Math. Comput. 107, 121–136 (2000)zbMATHCrossRefMathSciNetGoogle Scholar
  29. 29.
    Reidys, C.M.: On acyclic orientations and sequential dynamical systems. Adv. Appl. Math. 27, 790–804 (2001)zbMATHCrossRefMathSciNetGoogle Scholar
  30. 30.
    Dittrich, P., di Fenizio, P.S.: Chemical organization theory: Towards a theory of constructive dynamical systems , preprint arXiv:q-bio.MN/0501016 x, pp. 1–7 (2005) (submitted)Google Scholar
  31. 31.
    Ziegler, J., Banzhaf, W.: Evolving control metabolisms for a robot. Artif. Life 7, 171–190 (2001)CrossRefGoogle Scholar
  32. 32.
    Bedau, M.A., Buchanan, A., Gazzola, G., Hanczyc, M., Maeke, T., McCaskill, J., Poli, I., Packard, N.H.: Evolutionary design of a DDPD model of ligation. In: Talbi, E.-G., Liardet, P., Collet, P., Lutton, E., Schoenauer, M. (eds.) EA 2005. LNCS, vol. 3871, pp. 201–212. Springer, Heidelberg (2006) (in press) CrossRefGoogle Scholar
  33. 33.
    Speroni Di Fenizio, P., Dittrich, P.: Artificial chemistry’s global dynamics. movement in the lattice of organisation. The Journal of Three Dimensional Images 16, 160–163 (2002)Google Scholar
  34. 34.
    Dittrich, P., Ziegler, J., Banzhaf, W.: Artificial chemistries - a review. Artif. Life 7, 225–275 (2001)CrossRefGoogle Scholar
  35. 35.
    Banzhaf, W.: Self-replicating sequences of binary numbers – foundations I and II: General and strings of length n = 4. Biol. Cybern. 69, 269–281 (1993)zbMATHCrossRefGoogle Scholar
  36. 36.
    Fontana, W., Buss, L.W.: ’The arrival of the fittest’: Toward a theory of biological organization. Bull. Math. Biol. 56, 1–64 (1994)zbMATHGoogle Scholar
  37. 37.
    Benkö, G., Flamm, C., Stadler, P.F.: A graph-based toy model of chemistry. J. Chem. Inf. Comput. Sci. 43, 2759–2767 (2003)Google Scholar
  38. 38.
    Gillespie, D.T.: Exact stochastic simulation of coupled chemical-reactions. J. Phys. Chem. 81, 2340–2361 (1977)CrossRefGoogle Scholar
  39. 39.
    Mayer, B., Rasmussen, S.: Dynamics and simulation of micellar self-reproduction. Int. J. Mod. Phys. C 11, 809–826 (2000)Google Scholar
  40. 40.
    Cardelli, L.: Brane calculi. In: Danos, V., Schachter, V. (eds.) CMSB 2004. LNCS (LNBI), vol. 3082, pp. 257–278. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  41. 41.
    Dittrich, P.: Selbstorganisation in einem System von Binärstrings mit algorithmischen Sekundärstrukturen. Diploma thesis, Dept. of Computer Science, University of Dortmund (1995)Google Scholar
  42. 42.
    Speroni di Fenizio, P.: A less abstract artficial chemistry. In: Bedau, M.A., McCaskill, J.S., Packard, N.H., Rasmussen, S. (eds.) Artificial Life VII, pp. 49–53. MIT Press, Cambridge (2000)Google Scholar
  43. 43.
    Banzhaf, W., Dittrich, P., Rauhe, H.: Emergent computation by catalytic reactions. Nanotechnology 7, 307–314 (1996)CrossRefGoogle Scholar
  44. 44.
    Eigen, M., Schuster, P.: The hypercycle: a principle of natural self-organisation, part A. Naturwissenschaften 64, 541–565 (1977)CrossRefGoogle Scholar
  45. 45.
    Fontana, W., Wagner, G., Buss, L.W.: Beyond digital naturalism. Artif. Life 1(2), 211–227 (1994)CrossRefGoogle Scholar
  46. 46.
    Dittrich, P., Banzhaf, W.: Self-evolution in a constructive binary string system. Artif. Life 4, 203–220 (1998)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2005

Authors and Affiliations

  • Peter Dittrich
    • 1
  1. 1.Bio Systems Analysis Group, Jena Centre for Bioinformatics (JCB) and Department of Mathematics and Computer ScienceFriedrich-Schiller-University JenaJenaGermany

Personalised recommendations