Skip to main content

Exploring Complex Landscapes with Classical Monte Carlo

  • Chapter
  • First Online:
Quantum Annealing and Other Optimization Methods

Part of the book series: Lecture Notes in Physics ((LNP,volume 679))

  • 1541 Accesses

Abstract

Nowadays, the annealing concept is useful in (at least) two different fields, namely Physics and Optimization. The annealing strategy was well known in a physical context when Kirkpatrick, Gellat and Vecchi [1] generalized it to complex Optimization problems. A familiar example (for a physicist) is that of crystal growth: the more slowly you cool a liquid, the better crystal you will obtain when temperature drops beyond the melting point.1 One could say that Nature is trying to solve an Optimization problem: the variables to play with are the atomic positions, while the cost function to be minimized is the potential energy. The configuration that minimizes the cost function is the perfect crystal, and a slow annealing schedule allows Nature to find good crystals.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. S. Kirkpatrick, C.D. Gellatt, Jr., M.P. Vecchi, Science 20, 671 (1983).

    Article  ADS  Google Scholar 

  2. C. Kittel, Introduction to Solid State Physics, John Wiley & Sons; 8 edition (2004).

    Google Scholar 

  3. See e.g. M.E.J. Newman, G.T. Barkema, M. Newman, Monte Carlo Methods in Statistical Physics, Oxford University Press (1999); D.P. Landau and K. Binder, A Guide to Monte Carlo Simulations in Statistical Physics, Cambridge University Press (2000).

    Google Scholar 

  4. A.D. Sokal, in Functional Integration: Basics and Applications (1996 Cargèse summer school), ed. C. DeWitt-Morette, P. Cartier and A. Folacci (Plenum, New York, 1997).

    Google Scholar 

  5. F. Bert, V. Dupuis, E. Vincent, J. Hammann and J.-P. Bouchaud, Phys. Rev. Lett. 92, 167203 (2004).

    Article  ADS  Google Scholar 

  6. S. Jiménez, V. Martín-Mayor, G. Parisi and A. Tarancón, J. Phys. A 36, 10755 (2003).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  7. S. Jimenez, V. Martin-Mayor, S. Perez-Gaviro, cond-mat/0406365 and in preparation.

    Google Scholar 

  8. A. Cruz, J. Pech, A. Tarancón, P. Téllez, C.L. Ullod and C. Ungil, Comput. Phys. Commun. 133, 165 (2001).

    Article  ADS  MATH  Google Scholar 

  9. See e.g. J.Horbach, W. Kob and K. Binder, J. Phys. Chem. B 103, 4104-4108 (1999)

    Article  Google Scholar 

  10. R.H. Swendsen and J.-S. Wang, Phys. Rev. Lett. 58, 86 (1987).

    Article  ADS  Google Scholar 

  11. M. Nielsen, I.L. Chaung, Quantum Computation and Quantum Information, Cambridge University Press (2000).

    Google Scholar 

  12. J.A. Mydosh, Spin Glasses: an Experimental Introduction (Taylor and Francis, London 1993).

    Google Scholar 

  13. K. Binder and A.P. Young, Rev. Mod. Phys. 58, 801 (1986); K.H. Fisher and J.A. Hertz, Spin Glasses (Cambridge University Press, Cambridge U.K. 1991)

    Google Scholar 

  14. M. Mézard, G. Parisi and M.A. Virasoro, Spin Glass Theory and Beyond (World Scientific, Singapore 1987);

    MATH  Google Scholar 

  15. E. Marinari, G. Parisi, F. Ricci-Tersenghi, J.J. Ruiz-Lorenzo and F. Zuliani, J. Stat. Phys. 98, 973 (2000).

    Article  MathSciNet  MATH  Google Scholar 

  16. Spin Glasses and Random Fields, edited by A.P. Young. World Scientific (Singapore, 1997).

    Google Scholar 

  17. J.P. Bouchaud, L. Cugliandolo, J. Kurchan and M. Mézard, in [16]; J.J. Ruiz-Lorenzo, Advances in Condensed Matter and Statistical Mechanics, Ed. E. Korutcheva, R. Cuerno, Nova Science Publishers (2004).

    Google Scholar 

  18. C.A. Angell, Science 267, 1924-1935 (1995).

    Article  ADS  Google Scholar 

  19. P.G. DeBenedetti and F.H. Stillinger, Nature 410, 259-267 (2001).

    Article  ADS  Google Scholar 

  20. T.R. Kirkpatrick and D. Thirumalai, Phys. Rev. Lett. 58, 2091 (1987) and Phys. Rev. B 36, 5388 (1987); T.R. Kirkpatrick, D. Thirumalai and P.G. Wolynes, Phys. Rev. A 40, 1045 (1989).

    Google Scholar 

  21. L. Cugliandolo, Dynamics of glassy systems, Lecture notes, Les Houches, July 2002, cond-mat/0210312.

    Google Scholar 

  22. T.S. Grigera and G. Parisi, Phys. Rev. E 63, 045102(R) (2001).

    Google Scholar 

  23. L.A. Fernández, V. Martín-Mayor and P. Verrocchio, in preparation.

    Google Scholar 

  24. W.L. McMillan, J. Phys. C 17, 3179 (1984). A.J. Bray and M.A. Moore, in Heidelberg Colloquium on Glassy Dynamics, edited by J.L. Van Hemmen and I. Morgenstern (Springer Verlag, Heidelberg, 1986), p. 121. D.S. Fisher and D.A. Huse, Phys. Rev. Lett. 56, 1601 (1986); Phys. Rev. B 38, 386 (1988).

    Google Scholar 

  25. M. Palassini and A.P. Young, Phys. Rev. Lett. 85, 3017 (2000).

    Article  ADS  Google Scholar 

  26. M. Tesi, E. Janse van Resburg, E. Orlandini and S.G. Whillington, J. Stat. Phys. 82, 155 (1996); K. Hukushima and K. Nemoto, J. Phys. Soc. Jpn. 65, 1604 (1996).

    Google Scholar 

  27. H.G. Ballesteros, A. Cruz, L.A. Fernandez, V. Martin-Mayor, J. Pech, J.J. Ruiz-Lorenzo, A. Tarancon, P. Tellez, C.L. Ullod and C. Ungil, Phys. Rev. B 62, 14237 (2000).

    Article  ADS  Google Scholar 

  28. J. Houdayer, Eur. Phys. Jour. B 22, 479 (2001).

    Article  ADS  Google Scholar 

  29. G.E. Santoro, R. Martonak, E. Tosatti and R. Car, Science 295, 2427 (2002).

    Article  ADS  Google Scholar 

  30. See D.A. Battagglia, G.E. Santoro and E. Tosatti, cond-mat/0502468. Actually, in this paper the 3-SAT problem is studied. This model is a close relative of the p=3 Sherrington-Kirkpatrick model.

    Google Scholar 

  31. L.C.E. Struick, Physical aging in amorphous polymers and others materials, (Elsevier, Houston, 1978).

    Google Scholar 

  32. D. Bonn, H. Tanaka, G. Wegdam, H. Kellay, and J. Meunier, Europhys. Lett. 45, 52 (1998).

    Article  ADS  Google Scholar 

  33. R.V. Chamberlin, M. Hardiman and R. Orbach, J. Appl. Phys. 52, 1771 (1983); L. Lundgren, P. Svelindh, P. Norblad and O. Beckman, Phys. Rev. Lett. 51, 911 (1983) and J. Appl. Phys. 57, 3371 (1985).

    Google Scholar 

  34. J. Kurchan, Comptes Rendus de Physique de l'Academie des Sciences IV, 239 (2001).

    Google Scholar 

  35. E. Vincent, J. Hamman, M. Ocio, J.P. Bouchaud and L.F. Cugliandolo in Complex behaviour of glassy systems, ed. M. Rubi, Springer-Verlag Lecture Notes in Physics 492, 184 (1997) (cond-mat/96072224).

    Google Scholar 

  36. L.F. Cugliandolo and J. Kurchan, Phys. Rev. Lett. 71, 173 (1993); L.F. Cugliandolo, J. Kurchan and L. Peliti, Phys. Rev. E 55, 3898 (1997).

    Google Scholar 

  37. S. Franz, M. Mézard, G. Parisi, L. Peliti, Phys. Rev. Lett. 81, 1758 (1998); J. Stat. Phys. 97, 459 (1999).

    Google Scholar 

  38. E. Marinari, G. Parisi, F. Ricci-Tersenghi and J.J. Ruiz-Lorenzo, J. Phys. A 31, 2611 (1998); S. Franz and H. Rieger, J. Stat. Phys. 79, 749 (1995).

    Google Scholar 

  39. G.F. Rodriguez, G.G. Kenning and R. Orbach, Phys. Rev. Lett. 91, 037203 (2003).

    Article  ADS  Google Scholar 

  40. V. Dupuis, F. Bert, J.-P. Bouchaud, J. Hammann, F. Ladieu, D. Parker and E. Vincent, cond-mat/0406721.

    Google Scholar 

  41. A.J. Bray, Adv. Phys. 43, 357 (1994).

    Article  MathSciNet  ADS  Google Scholar 

  42. J.-P. Bouchaud in: Soft and Fragile Matter: Nonequilibrium Dynamics, Metastability and Flow, edited by M.E. Cates and M.R. Evans (IOP publishing, Bristol, 2000).

    Google Scholar 

  43. B. Abou, D. Bonn, and J. Meunier, Phys. Rev. E, 64 021510 (2001); A. Knaebel, M. Bellor, J.-P. Munch, V. Viasnoff, F. Lequeux, and J.L. Harden, Europhys. Lett. 52, 73 (2000).

    Google Scholar 

  44. L. Buisson, L. Bellon, and S. Ciliberto, J. Phys: Cond. Matt. 15, S1163 (2003).

    Article  ADS  Google Scholar 

  45. W. Kob and J.-L. Barrat, Phys. Rev. Lett. 78, 4581 (1997).

    Article  ADS  Google Scholar 

  46. R.L. Leheny and S.R. Nagel, Phys. Rev. B 57, 5154 (1998).

    Article  ADS  Google Scholar 

  47. T.S. Grigera and N.E. Israeloff, Phys. Rev. Lett. 83, 5038 (1999).

    Article  ADS  Google Scholar 

  48. L. Bellon, S. Ciliberto, and C. Laroche, Europhys. Lett. 53, 511 (2001); L. Bellon and S. Ciliberto, Physica D 168, 325 (2002); D. Hérisson and M. Ocio, Phys. Rev. Lett. 88, 257202 (2002); L. Buisson, S. Ciliberto, and A. Garcimartíin, Europhys. Lett. 63, 603 (2003).

    Google Scholar 

  49. G. Parisi, Phys. Rev. Lett. 79, 3660 (1997); J.L. Barrat and W. Kob, Europhys. Lett. 46, 637 (1999); R. Di Leonardo, L. Angelani, G. Parisi, and G. Ruocco. Phys. Rev. Lett. 84, 6054 (2000).

    Google Scholar 

  50. F. Sciortino and P. Tartaglia, Phys. Rev. Lett. 86, 107 (2001).

    Article  ADS  Google Scholar 

  51. A.Q. Tool, J. Am. Ceram. Soc. 29, 240 (1946); O.S. Narayanaswamy, ibid. 54, 491 (1971); C.T. Moyniham, ibid. 59, 12 (1976); 59, 16 (1976).

    Google Scholar 

  52. See e.g. J.P. Hansen and I.R. McDonald, Theory of Simple Liquids, Academic Press (San DIego, 1986).

    Google Scholar 

  53. W. Götze, L. Sjögren, Rep. Prog. Phys. 55, 241 (1992).

    Article  Google Scholar 

  54. D.J. Thouless, P.W. Anderson and R.G. Palmer, Phil. Mag. 35, 593 (1977).

    Article  ADS  Google Scholar 

  55. C. de Dominicis and A.P. Young, J. Phys. A 16, 2063 (1983).

    Article  ADS  MathSciNet  Google Scholar 

  56. R. Monasson, Phys. REv. Lett. 75, 2847 (1995).

    Article  ADS  Google Scholar 

  57. Cavagna, A., Giardina, I., Parisi, G., Role of saddles in mean-field dynamics above the glass transition J. Phys. A: Math. Gen. 34, 5317-5326 (2001)

    Article  ADS  Google Scholar 

  58. F.H. Stillinger, Science 267, 1935-1939 (1995).

    Article  ADS  Google Scholar 

  59. T.S. Grigera, V. Martin-Mayor, G. Parisi and P. Verrocchio, Nature 422, 289 (2003)

    Article  ADS  Google Scholar 

  60. W.A. Phillips, U. Buchenau, N. Nücher, A.-J. Dianoux, and W. Petry, Phys. Rev. Lett. 63, 2381-2384 (1989).

    Article  ADS  Google Scholar 

  61. F. Sette, M.H. Krisch, C. Masciovecchio, G. Ruocco and G. Monaco, Science 280, 1550-1555 (1998).

    Article  Google Scholar 

  62. G. Ruocco et al., Phys. Rev. Lett. 84, 5788-5791 (2000).

    Article  ADS  Google Scholar 

  63. O. Pilla et al., preprint condmat/0209519

    Google Scholar 

  64. C. Masciovecchio et al., Phys. Rev. Lett. 76, 3356-3359 (1996).

    Article  ADS  Google Scholar 

  65. A. Matic et al., Europhys. Lett. 54, 77-83 (2001).

    Article  ADS  Google Scholar 

  66. C. Masciovecchio et al., Phys. Rev. B 55, 8049-8051 (1997).

    Article  ADS  Google Scholar 

  67. P. Benassi et al., Phys. Rev. Lett. 77, 3835-3838 (1996).

    Article  ADS  Google Scholar 

  68. D. Fioretto et al., Phys. Rev. E 59, 4470-4475 (1999).

    Article  ADS  Google Scholar 

  69. O. Pilla et al., Phys. Rev. Lett. 85, 2136-2139 (2000).

    Article  ADS  Google Scholar 

  70. T.S. Grigera, V. Martín-Mayor, G., Parisi, and P. Verrocchio, J. Phys.: Condens. Matter 14, 2167-2179 (2002).

    Article  ADS  Google Scholar 

  71. V. Martín-Mayor, M. Mèzard, G., Parisi, and P. Verrocchio, J. Chem. Phys. 114, 8068-8081 (2001).

    Article  ADS  Google Scholar 

  72. T.S. Grigera, V. Martín-Mayor, G. Parisi, and P. Verrocchio, Phys. Rev. Lett. 87, 085502-1-085502-4 (2001).

    Google Scholar 

  73. S. Ciliberti, T.S. Grigera, V. Martin-Mayor, G. Parisi and P. Verrocchio, J. Chem. Phys. 119, 8577 (2003)

    Article  ADS  Google Scholar 

  74. M. Mèzard, G. Parisi, G., and A. Zee, Nuc. Phys. B 559, 689-701 (1999).

    Article  ADS  MATH  Google Scholar 

  75. L. Angelani, R. Di Leonardo, G. Ruocco, A. Scala, and F. Sciortino, Phys. Rev. Lett. 85, 5356-5359 (2000).

    Article  ADS  Google Scholar 

  76. K. Broderix, K. Bhattacharya, A. Cavagna, A. Zippelius, and I. Giardina, Phys. Rev. Lett. 85, 5360-5363 (2000).

    Article  ADS  Google Scholar 

  77. T.S. Grigera, A. Cavagna, I, Giardina, I., and G. Parisi, Phys. Rev. Lett. 88, 055502-1-055502-4 (2002).

    Google Scholar 

  78. W. Kob and H.C. Andersen, Phys. Rev. E 51, 4626-6241 (1995).

    Article  ADS  Google Scholar 

  79. W. Kob, F. Sciortino, and P. Tartaglia, Europhys. Lett. 49, 590-596 (2000).

    Article  ADS  Google Scholar 

  80. T.S. Grigera, V. Martin-Mayor, G. Parisi, and P. Verrocchio, Phys. Rev. B 70, 014202 (2004).

    Article  ADS  Google Scholar 

  81. B. Bernu, J.-P. Hansen, Y. Hiwatari, and G. Pastore, Phys. Rev. A 36, 4891-4903 (1987).

    Article  ADS  Google Scholar 

  82. L. Santen and W. Krauth, Nature 405, 550 (2000).

    Article  ADS  Google Scholar 

  83. L. Berthier and J.P. Garrahan J. Chem. Phys. 119, 4367 (2003); S. Whitelam, L. Berthier, and J.P. Garraham, Phys. Rev. Lett. 92, 185705 (2004).

    Google Scholar 

  84. D. Kivelson, S.A. Kivelson, X. Zhao, Z. Nussinov, and G. Tarjus, Physica A 219, 27 (1995).

    Article  ADS  Google Scholar 

  85. M. Mézard and G. Parisi, Phys. Rev. Lett. 82, 747 (1998); B. Coluzzi, G. Parisi, and P. Verrocchio, Phys. Rev. Lett. 84, 306 (2000).

    Google Scholar 

  86. A. Cavagna, I. Giardina, and T.S. Grigera, J. Chem. Phys. 118, 6974 (2003).

    Article  ADS  Google Scholar 

  87. K. Jonason, K. Jonason, E. Vincent, J. Hammann, J.P. Bouchaud, and P. Nordblad, Phys. Rev. Lett. 81, 3243 (1998).

    Article  ADS  Google Scholar 

  88. L. Lundgren, P. Svendlinsh, O. Beckman, Journal of Magn. Magn. Mat. 31-34, 1349 (1983); T. Jonsson, K. Jonason, P. Jönsson, and P. Nordblad, Phys. Rev. B 59, 8770(1999); J. Hammann, E. Vincent, V. Dupuis, M. Alba, M. Ocio and J.-P. Bouchaud, J. Phys. Soc. Jpn. 69, (2000) Suppl. A, 206-211.

    Google Scholar 

  89. H. Takayama and K. Hukushima, J. Phys. Soc. Jpn. 71, 3003 (2002).

    Article  ADS  Google Scholar 

  90. S. Miyashita, E. Vincent, Eur. Phys. J. B 22, 203 (2001).

    Article  ADS  Google Scholar 

  91. P.E. Jönsson, H. Yoshino, H. Mamiya and H. Takayama, preprint cond-mat/0405276.

    Google Scholar 

  92. H. Yardimci, R.L. Leheny, Europhys. Lett. 62, 203 (2003).

    Article  ADS  Google Scholar 

  93. E. Vincent, V. Dupuis, M. Alba, J. Hammann, J.-P. Bouchaud, Europhys. Lett 50 674 (2000).

    Article  ADS  Google Scholar 

  94. L. Bellon, S. Ciliberto, C. Laroche, Eur. Phys. J. B 25, 223 (2002).

    Article  ADS  Google Scholar 

  95. K. Fukao and A. Sakamoto, cond-mat/0410602.

    Google Scholar 

  96. P. Levy, F. Parisi, L. Granja, E. Indelicato and G. Polla, Phys. Rev. Lett. 89, 137001 (2002).

    Article  ADS  Google Scholar 

  97. P.E. Jönson, H. Yoshino and P. Nordblad, Phys. Rev. Lett. 89, 97201 (2002).

    Article  Google Scholar 

  98. P.E. Jönsson, R. Mathieu, P. Nordblad, H. Yoshino, H. Aruga Katori and A. Ito, Phys. Rev. B 70, 174402 (2004).

    Article  ADS  Google Scholar 

  99. J.-P. Bouchaud and D.S. Dean, J. Phys. I (France) 5, 265 (1995); M. Sales, J.-P. Bouchaud and F. Ritort, J. Phys. A: Math. Gen. 36, 665 (2003); M. Sasaki, V. Dupuis, J.-P. Bouchaud and E. Vincent, Eur. Phys. J. B 29, 469 (2002).

    Google Scholar 

  100. J.P. Bouchaud, Soft and Fragile matter, Eds: M.E. Cates, M.R. Evans (Institute of Physics Publishing, 2000).

    Google Scholar 

  101. T. Komori, H, Yoshino, H. Takayama, J. Phys. Soc. Jpn. 69, Suppl., 228 (2000).

    Article  Google Scholar 

  102. M. Picco, F. Ricci-Tersenghi, F. Ritort, Phys. Rev. B 63, 174412 (2001).

    Article  ADS  Google Scholar 

  103. L. Berthier, J.-P. Bouchaud, Phys. Rev. B 66, 054404 (2002).

    Article  ADS  Google Scholar 

  104. A. Maiorano, E. Marinari and F. Ricci-Tersenghi, cond-mat/0409577.

    Google Scholar 

  105. See L.W. Bernardi, H. Yoshino, K. Hukushima, H. Takayama, A. Tobo and A. Ito, Phys. Rev. Lett. 86, 720 (2001),.

    Article  ADS  Google Scholar 

  106. F. Ricci-Tersenghi, private communication.

    Google Scholar 

  107. M. Sasaki, O.C. Martin, Phys. Rev. Lett. 91, 097201 (2003).

    Article  ADS  Google Scholar 

  108. E. Marinari, G. Parisi, F. Ricci-Tersenghi and J.J. Ruiz-Lorenzo, J. Phys. A 33,2373 (2000).

    Article  ADS  Google Scholar 

  109. T. Komori, H. Yoshino and H. Takayama, J. Phys. Soc. Jpn. 68, 3387 (1999).

    Article  ADS  Google Scholar 

  110. H.G. Ballesteros, L.A. Fernández, V. Martín-Mayor, A. Muoz Sudupe, G. Parisi and J.J. Ruiz-Lorenzo, Phys. Rev. B, 58 2740 (1998).

    Article  ADS  Google Scholar 

  111. J.P. Bouchaud, Soft and Fragile matter, Eds: M.E. Cates, M.R. Evans (Institute of Physics Publishing, 2000).

    Google Scholar 

  112. T. Komori, H, Yoshino, H. Takayama, J. Phys. Soc. Jpn. 69, Suppl., 228 (2000).

    Article  Google Scholar 

  113. L. Berthier, J.-P. Bouchaud, Phys. Rev. B 66, 054404 (2002).

    Article  ADS  Google Scholar 

  114. A. Maiorano, E. Marinari and F. Ricci-Tersenghi, cond-mat/0409577.

    Google Scholar 

  115. See L.W. Bernardi, H. Yoshino, K. Hukushima, H. Takayama, A. Tobo and A. Ito, Phys. Rev. Lett. 86, 720 (2001),.

    Article  ADS  Google Scholar 

  116. F. Ricci-Tersenghi, private communication.

    Google Scholar 

  117. M. Sasaki, O.C. Martin, Phys. Rev. Lett. 91, 097201 (2003).

    Article  ADS  Google Scholar 

  118. E. Marinari, G. Parisi, F. Ricci-Tersenghi and J.J. Ruiz-Lorenzo, J. Phys. A 33,2373 (2000).

    Article  ADS  Google Scholar 

  119. T. Komori, H. Yoshino and H. Takayama, J. Phys. Soc. Jpn. 68, 3387 (1999).

    Article  ADS  Google Scholar 

  120. H.G. Ballesteros, L.A. Fernández, V. Martín-Mayor, A. Muoz Sudupe, G. Parisi and J.J. Ruiz-Lorenzo, Phys. Rev. B, 58 2740 (1998).

    Article  ADS  Google Scholar 

  121. J.P. Bouchaud, Soft and Fragile matter, Eds: M.E. Cates, M.R. Evans (Institute of Physics Publishing, 2000).

    Google Scholar 

  122. T. Komori, H, Yoshino, H. Takayama, J. Phys. Soc. Jpn. 69, Suppl., 228 (2000).

    Article  Google Scholar 

  123. L. Berthier, J.-P. Bouchaud, Phys. Rev. B 66, 054404 (2002).

    Article  ADS  Google Scholar 

  124. A. Maiorano, E. Marinari and F. Ricci-Tersenghi, cond-mat/0409577.

    Google Scholar 

  125. See L.W. Bernardi, H. Yoshino, K. Hukushima, H. Takayama, A. Tobo and A. Ito, Phys. Rev. Lett. 86, 720 (2001),.

    Article  ADS  Google Scholar 

  126. F. Ricci-Tersenghi, private communication.

    Google Scholar 

  127. M. Sasaki, O.C. Martin, Phys. Rev. Lett. 91, 097201 (2003).

    Article  ADS  Google Scholar 

  128. E. Marinari, G. Parisi, F. Ricci-Tersenghi and J.J. Ruiz-Lorenzo, J. Phys. A 33, 2373 (2000).

    Article  ADS  Google Scholar 

  129. T. Komori, H. Yoshino and H. Takayama, J. Phys. Soc. Jpn. 68, 3387 (1999).

    Article  ADS  Google Scholar 

  130. H.G. Ballesteros, L.A. Fernández, V. Martín-Mayor, A. Muoz Sudupe, G. Parisi and J.J. Ruiz-Lorenzo, Phys. Rev. B, 58 2740 (1998).

    Article  ADS  Google Scholar 

  131. S. Jiménez, Ph.D. Thesis, U. Zaragoza, January 2005.

    Google Scholar 

  132. A.J. Bray, M.A. Moore, Phys. Rev. Lett. 58, 57 (1987)

    Article  ADS  Google Scholar 

  133. Parametrizations of C4(r,t) different from (29) can be found, where ξ does not decrease (J.P. Bouchaud and L. Berthier, private communication).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Arnab Das Bikas K. Chakrabarti

Rights and permissions

Reprints and permissions

About this chapter

Cite this chapter

Martín-Mayor, V. Exploring Complex Landscapes with Classical Monte Carlo. In: Das, A., K. Chakrabarti, B. (eds) Quantum Annealing and Other Optimization Methods. Lecture Notes in Physics, vol 679. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11526216_13

Download citation

  • DOI: https://doi.org/10.1007/11526216_13

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-27987-7

  • Online ISBN: 978-3-540-31515-5

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics