Advertisement

A New Concept of a Similarity Measure for Intuitionistic Fuzzy Sets and Its Use in Group Decision Making

  • Eulalia Szmidt
  • Janusz Kacprzyk
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3558)

Abstract

We propose a new measure of similarity for intuitionistic fuzzy sets, and use it to analyze the extent of agreement in a group of experts. The proposed measure takes into account two kinds of distances – one to an object to be compared, and one to its complement. We infer about the similarity of preferences on the basis of a difference between the two types of distances. We show that infering without taking into account a distance to a complement of an object can be misleading.

Keywords

Similarity Measure Group Decision Fuzzy Preference Relation Propose Similarity Measure Fuzzy Preference Structure 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Atanassov, K.: Intuitionistic Fuzzy Sets. Fuzzy Sets and Systems 20, 87–96 (1986)zbMATHCrossRefMathSciNetGoogle Scholar
  2. 2.
    Atanassov, K.: Intuitionistic Fuzzy Sets: Theory and Applications. Springer, Heidelberg (1999)zbMATHGoogle Scholar
  3. 3.
    Bouchon-Meunier, B., Rifgi, M., Bothorel, S.: General measures of comparison of objects. Fuzzy Sets and Systems 84(2), 143–153 (1996)zbMATHCrossRefMathSciNetGoogle Scholar
  4. 4.
    Chen, S., Yeh, M., Hsiao, P.: A comparison of similarity measures of fuzzy values. Fuzzy Sets and Systems 72(1), 79–89 (1995)CrossRefMathSciNetGoogle Scholar
  5. 5.
    Cross, V., Sudkamp, T.: Similarity and Compatibility in Fuzzy Set Theory. Physica, New York (2002)zbMATHGoogle Scholar
  6. 6.
    De Baets, B., Fodor, J. (eds.): Principles of Fuzzy Preference Modelling and Decision Making. Academic Press, London (2003)Google Scholar
  7. 7.
    Dengfeng, L., Chuntian, C.: New similarity measures of intuitionistic fuzzy sets and application to pattern recognitions. Pattern Recognition Letters 23, 221–225 (2002)zbMATHCrossRefGoogle Scholar
  8. 8.
    Kacprzyk, J.: Group decision making with a fuzzy linguistic majority. Fuzzy Sets and Systems 18, 105–118 (1986)zbMATHCrossRefMathSciNetGoogle Scholar
  9. 9.
    Kacprzyk, J., Fedrizzi, M.: Soft consensus measures for monitoring real consensus reaching processes under fuzzy preferences. Control and Cybernetics 15, 309–323 (1986)MathSciNetGoogle Scholar
  10. 10.
    Kacprzyk, J., Fedrizzi, M.: A soft measure of consensus in the setting of partial (fuzzy) preferences. European Journal of Operational Research 34, 315–325 (1988)CrossRefMathSciNetGoogle Scholar
  11. 11.
    Kacprzyk, J., Fedrizzi, M.: A human-consistent degree of consensus based on fuzzy logic with linguistic quantifiers. Mathematical Social Sciences 18, 275–290 (1989)zbMATHCrossRefMathSciNetGoogle Scholar
  12. 12.
    Kacprzyk, J., Fedrizzi, M., Nurmi, H.: Group decision making and consensus under fuzzy preferences and fuzzy majority. Fuzzy Sets and Systems 49, 21–32 (1992)zbMATHCrossRefMathSciNetGoogle Scholar
  13. 13.
    Kang, W.-T.: Protest voting and abstention under plurality rule elections. Journal of Theoretical Politics 16, 71–102 (2004)CrossRefGoogle Scholar
  14. 14.
    Loewer, B., Laddaga, R.: Destroying the consensus. In: Loewer, B. (ed.) Special Issue on Consensus. Synthese, vol. 62, pp. 79–96 (1985)Google Scholar
  15. 15.
    Pappis, C., Karacapilidis, N.: A comparative assessment of measures of similarity of fuzzy values. Fuzzy Sets and Systems 56, 171–174 (1993)zbMATHCrossRefMathSciNetGoogle Scholar
  16. 16.
    Szmidt, E.: Applications of Intuitionistic Fuzzy Sets in Decision Making. (D.Sc. dissertation) Techn. Univ. Sofia (2000) Google Scholar
  17. 17.
    Szmidt, E., Baldwin, J.: New Similarity Measure for Intuitionistic Fuzzy Set Theory and Mass Assignment Theory. Notes on IFSs 9(3), 60–76 (2003)zbMATHMathSciNetGoogle Scholar
  18. 18.
    Szmidt, E., Baldwin, J.: Entropy for Intuitionistic Fuzzy Set Theory and Mass Assignment Theory. Notes on IFSs 10(3), 15–28 (2004)MathSciNetGoogle Scholar
  19. 19.
    Szmidt, E., Kacprzyk, J.: Intuitionistic fuzzy sets in group decision making. Notes on IFS 2, 15–32 (1996)MathSciNetGoogle Scholar
  20. 20.
    Szmidt, E., Kacprzyk, J.: Remarks on some applications of intuitionistic fuzzy sets in decision making. Notes on IFS 2(3), 22–31 (1996)zbMATHMathSciNetGoogle Scholar
  21. 21.
    Szmidt, E., Kacprzyk, J.: On measuring distances between intuitionistic fuzzy sets. Notes on IFS 3(4), 1–13 (1997)zbMATHMathSciNetGoogle Scholar
  22. 22.
    Szmidt, E., Kacprzyk, J.: Group Decision Making under Intuitionistic Fuzzy Preference Relations. In: IPMU 1998, Paris, La Sorbonne, pp. 172–178 (1998)Google Scholar
  23. 23.
    Szmidt, E., Kacprzyk, J.: Applications of Intuitionistic Fuzzy Sets in Decision Making. In: EUSFLAT 1999, pp. 150–158 (1998)Google Scholar
  24. 24.
    Szmidt, E., Kacprzyk, J.: Distances between intuitionistic fuzzy sets. Fuzzy Sets and Systems 114(3), 505–518 (2000)zbMATHCrossRefMathSciNetGoogle Scholar
  25. 25.
    Szmidt, E., Kacprzyk, J.: On Measures on Consensus Under Intuitionistic Fuzzy Relations. In: IPMU 2000, pp. 1454–1461 (2000)Google Scholar
  26. 26.
    Szmidt, E., Kacprzyk, J.: Distance from Consensus Under Intuitionistic Fuzzy Preferences. In: Proc. EUROFUSE Workshop on Preference Modelling and Applications, Granada, pp. 73–78 (2001)Google Scholar
  27. 27.
    Szmidt, E., Kacprzyk, J.: Entropy for intuitionistic fuzzy sets. Fuzzy Sets and Systems 118(3), 467–477 (2001)zbMATHCrossRefMathSciNetGoogle Scholar
  28. 28.
    Szmidt, E., Kacprzyk, J.: Analysis of Consensus under Intuitionistic Fuzzy Preferences. In: Proc. Int. Conf. in Fuzzy Logic and Technology. De Montfort Univ. Leicester, UK, pp. 79–82 (2001)Google Scholar
  29. 29.
    Szmidt, E., Kacprzyk, J.: An Intuitionistic Fuzzy Set Based Approach to Intelligent Data Analysis (an application to medical diagnosis). In: Abraham, A., Jain, L., Kacprzyk, J. (eds.) Recent Advances in Intelligent Paradigms and and Applications, pp. 57–70. Springer, Heidelberg (2002)Google Scholar
  30. 30.
    Szmidt, E., Kacprzyk, J.: Analysis of Agreement in a Group of Experts via Distances Between Intuitionistic Fuzzy Preferences. In: Proc. 9th Int. Conf. IPMU 2002, Annecy, France, pp. 1859–1865 (2002)Google Scholar
  31. 31.
    Szmidt, E., Kacprzyk, J.: Similarity of intuitionistic fuzzy sets and the Jaccard coefficient. In: Proc. 10th Int. Conf. IPMU 2004, Perugia, Italy, pp. 1405–1412 (2004)Google Scholar
  32. 32.
    Tversky, A.: Features of similarity. Psychol. Rev. 84, 327–352 (1977)CrossRefGoogle Scholar
  33. 33.
    Wang, X., De Baets, B., Kerre, E.: A comparative study of similarity measures. Fuzzy Sets and Systems 73(2), 259–268 (1995)zbMATHCrossRefMathSciNetGoogle Scholar
  34. 34.
    Zadeh, L.A.: Fuzzy sets. Information and Control 8, 338–353 (1965)zbMATHCrossRefMathSciNetGoogle Scholar
  35. 35.
    Zadeh, L.A.: A computational approach to fuzzy quantifiers in natural languages. Comput. Math. Appl. 9(1), 149–184 (1983)zbMATHCrossRefMathSciNetGoogle Scholar
  36. 36.
    Zwick, R., Carlstein, E., Budescu, D.: Measures of similarity among fuzzy concepts: A comparative analysis. Int. J. of Approx. Reasoning 1, 221–242 (1987)CrossRefMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2005

Authors and Affiliations

  • Eulalia Szmidt
    • 1
  • Janusz Kacprzyk
    • 1
  1. 1.Systems Research InstitutePolish Academy of SciencesWarsawPoland

Personalised recommendations