Advertisement

Modeling Decisions for Artificial Intelligence: Theory, Tools and Applications

  • Vicenç Torra
  • Yasuo Narukawa
  • Sadaaki Miyamoto
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3558)

Abstract

Aggregation operators, in particular, and information fusion techniques, in general are being used in several Artificial Intelligence systems for modeling decisions. In this paper we give a personal overview of current trends and challenges as well as describe our aims with respect to the MDAI conference series.

Keywords

Decision modeling aggregation operators information fusion applications 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Beliakov, G.: How to build aggregation operators from data. Int. J. of Intel. Systems 18(8), 903–923 (2003)zbMATHCrossRefGoogle Scholar
  2. 2.
    Beliakov, G., Warren, J.: Appropriate Choice of Aggregation Operators in Fuzzy Decision Support Systems. IEEE Transactions on Fuzzy Systems 9(6), 773–784 (2001)CrossRefGoogle Scholar
  3. 3.
    Bi, Y., Bell, D., Wang, H., Guo, G., Greer, K.: Combining Multiple Classifiers Using Dempster’s Rule of Combination for Text Categorization. In: Torra, V., Narukawa, Y. (eds.) MDAI 2004. LNCS (LNAI), vol. 3131, pp. 127–138. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  4. 4.
    Calvo, T., Kolesárová, A., Komorníková, M., Mesiar, R.: Aggregation operators: properties, classes and construction methods. In: Calvo, T., Mayor, G., Mesiar, R. (eds.) Aggregation Operators, pp. 3–104. Physica, New York (2002)Google Scholar
  5. 5.
    Chiclana, F., Herrera-Viedma, E., Herrera, F., Alonso, S.: Induced ordered weighted geometric operators and their use in the aggregation of multiplicative preference relations. Int. J. of Intel. Systems 19(3), 233–255 (2004)zbMATHCrossRefGoogle Scholar
  6. 6.
    Dujmović, J.J.: Weighted conjunctive and disjunctive means and their application in system evaluation. Journal of the University of Belgrade, EE Dept. Series Mathematics and Physics 483, 147–158 (1974)Google Scholar
  7. 7.
    Dujmovic, J.J., Fang, W.Y.: Reliability of LSP Criteria, Modeling Decisions for Artificial Intelligence. In: Torra, V., Narukawa, Y. (eds.) MDAI 2004. LNCS (LNAI), vol. 3131, pp. 151–162. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  8. 8.
    Fernández Salido, J.M., Murakami, S.: Extending Yager’s orness concept for the OWA aggregators to other mean operators. Fuzzy Sets and Systems 139, 515–549 (2003)zbMATHCrossRefMathSciNetGoogle Scholar
  9. 9.
    Grabisch, M., Labreuche, C.: Bi-capacities I: definition, Mobius transform and interaction. Fuzzy Sets and Systems 151, 211–236 (2005)zbMATHCrossRefMathSciNetGoogle Scholar
  10. 10.
    Grabisch, M., Labreuche, C.: Bi-capacities II: the Choquet integral Fuzzy Sets and Systems  151, 237–259 (2005)Google Scholar
  11. 11.
    Hägele, G., Pukelsheim, F.: Llull’s writings on electoral systems. Studia Lulliana 41, 3–38 (2001)Google Scholar
  12. 12.
    Herrera-Viedma, E.: Fuzzy Qualitative Models to Evaluate the Quality on the Web. In: Torra, V., Narukawa, Y. (eds.) MDAI 2004. LNCS (LNAI), vol. 3131, pp. 15–26. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  13. 13.
    Höppner, F., Klawonn, F., Kruse, R., Runkler, T.: Fuzzy cluster analysis. Wiley, Chichester (1999)zbMATHGoogle Scholar
  14. 14.
    Kojadinovic, I.: Unsupervised Aggregation by the Choquet integral based on entropy functionals: Application to the Evaluation of Students. In: Torra, V., Narukawa, Y. (eds.) MDAI 2004. LNCS (LNAI), vol. 3131, pp. 163–174. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  15. 15.
    Kojadinovic, I.: Unsupervised aggregation of commensurate correlated attributes by means of the Choquet integral and entropy functionals. Int. J. of Intel. Systems (2006) (accepted)Google Scholar
  16. 16.
    Kuncheva, L.I.: Fuzzy versus nonfuzzy in combining classifiers designed by Boosting. IEEE Trans. on Fuzzy Systems 11(6), 729–741 (2003)CrossRefGoogle Scholar
  17. 17.
    Mesiar, R., Mesiarová, A.: Fuzzy Integrals. In: Torra, V., Narukawa, Y. (eds.) MDAI 2004. LNCS (LNAI), vol. 3131, pp. 7–14. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  18. 18.
    Miranda, P., Grabisch, M., Gil, P.: p-symmetric fuzzy measures. Int. J. of Unc. Fuzz. and Knowledge-Based Systems 10, 105–123 (2002)zbMATHCrossRefMathSciNetGoogle Scholar
  19. 19.
    Miyamoto, S.: Introduction to fuzzy clustering (in Japanese), Ed. Morikita, Tokyo (1999) Google Scholar
  20. 20.
    Miyamoto, S.: Information clustering based on fuzzy multisets. Inf. Proc. and Management 39(2), 195–213 (2003)zbMATHCrossRefGoogle Scholar
  21. 21.
    Miyamoto, S.: Generalizations of multisets and rough approximations. Int. J. Intell. Syst. 19(7), 639–652 (2004)zbMATHCrossRefGoogle Scholar
  22. 22.
    Miyamoto, S., Nakayama, K.: Similarity measures based on a fuzzy set model and application to hierarchical clustering. IEEE Trans. on Syst. Man, and Cyb. 16(3), 479–482 (1986)CrossRefGoogle Scholar
  23. 23.
    Murofushi, T., Narukawa, Y.: A characterization of multi-level discrete Choquet integral over a finite set (in Japanese). In: Proc. of 7th Workshop on Evaluation of Heart and Mind, pp. 33–36 (2002)Google Scholar
  24. 24.
    Narukawa, Y., Murofushi, T.: Choquet integral and Sugeno integral as aggregation funcitons. In: Torra, V. (ed.) Information Fusion in Data Mining, pp. 27–39. Springer, Heidelberg (2003)Google Scholar
  25. 25.
    Narukawa, Y., Torra, V.: Fuzzy measure and probability distributions: distorted probabilities. IEEE Trans. on Fuzzy Systems (accepted)Google Scholar
  26. 26.
    Pal, N.R., Mudi, R.K.: Computational intelligence for decision-making systems. Int. J. of Intel. Systems 18(5), 483–486 (2003)CrossRefGoogle Scholar
  27. 27.
    Pasi, G.: Modeling users’ preferences in systems for information access. Int. J. of Intel. Systems 18(7), 793–808 (2003)zbMATHCrossRefGoogle Scholar
  28. 28.
    Pawlak, Z., Peters, J.F., Skowron, A., Suraj, Z., Ramanna, S., Borkowski, M.: Rough Measures and Integrals: A Brief Introduction. In: Terano, T., Nishida, T., Namatame, A., Tsumoto, S., Ohsawa, Y., Washio, T. (eds.) JSAI-WS 2001. LNCS (LNAI), vol. 2253, pp. 375–379. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  29. 29.
    Soria-Frisch, A.: Hybrid SOM and fuzzy integral frameworks for fuzzy classification. In: Proc. IEEE Int. Conf. on Fuzzy Systems, pp. 840–845 (2003)Google Scholar
  30. 30.
    Soria-Frisch, A.: Unsupervised Construction of Fuzzy Measures through Self-Organizing Feature Maps and its Application in Color Image Segmentation. Int. J. of Approx. Reasoning (2006) (accepted)Google Scholar
  31. 31.
    Sweeney, L.: Information Explosion. In: Doyle, P., Lane, J.I., Theeuwes, J.J.M., Zayatz, L.M. (eds.) Confidentiality, Disclosure, and Data Access: Theory and Practical Applications for Statistical Agencies, pp. 43–74. Elsevier, Amsterdam (2001)Google Scholar
  32. 32.
    Torra, V.: On some relationships between hierarchies of quasi-arithmetic means and neural networks. Intl. J. of Intel. Syst. 14(11), 1089–1098 (1999)zbMATHCrossRefGoogle Scholar
  33. 33.
    Torra, V.: OWA operators in data modeling and reidentification. IEEE Trans. on Fuzzy Systems 12(5), 652–660 (2004)CrossRefGoogle Scholar
  34. 34.
    Torra, V.: Aggregation Operators and Models, Fuzzy Sets and Systems (2005) (in press)Google Scholar
  35. 35.
    Torra, V., Narukawa, Y.: On the Meta-knowledge Choquet Integral and Related Models. Intl. J. of Intelligent Systems (in press)Google Scholar
  36. 36.
    Torra, V., Narukawa, Y., Lòpez-Orriols, J.M.: Dynamic aggregation and time dependent weights. Int. J. of Unc. Fuzziness and Knowledge Based Systems (submitted)Google Scholar
  37. 37.
    Tunstel, E., Oliveira, M.A.A., Berman, S.: Fuzzy Behavior Hierarchies for Multi-Robot Control. Intl. J. of Intel. Systems 17, 449–470 (2002)zbMATHCrossRefGoogle Scholar
  38. 38.
    Yager, R.R.: On the theory of bags. Int. J. General Systems 13, 23–37 (1986)CrossRefMathSciNetGoogle Scholar
  39. 39.
    Yager, R.R.: On ordered weighted averaging aggregation operators in multi-criteria decision making. IEEE Trans. Syst. Man, Cybern. 18, 183–190 (1988)zbMATHCrossRefMathSciNetGoogle Scholar
  40. 40.
    Yager, R.R.: Noble reinforcement in disjunctive aggregation operators. IEEE Trans. on Fuzzy Systems 11(6), 754–767 (2003)CrossRefGoogle Scholar
  41. 41.
    Xu, Z.S., Da, Q.L.: An overview of operators for aggregating information. Int. J. of Intel. Systems 18(9), 953–969 (2003)zbMATHCrossRefGoogle Scholar
  42. 42.
    Xu, K., Wang, Z., Heng, P.-A., Leung, K.-S.: Classification by nonlinear integral projections. IEEE Trans on Fuzzy Systems 11(2), 187–201 (2003)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2005

Authors and Affiliations

  • Vicenç Torra
    • 1
  • Yasuo Narukawa
    • 2
  • Sadaaki Miyamoto
    • 3
  1. 1.Institut d’Investigació en Intel.ligència ArtificialBellaterraSpain
  2. 2.Toho GakuenTokyoJapan
  3. 3.Department of Risk Engineering, School of Systems and Information EngineeringUniversity of TsukubaJapan

Personalised recommendations