Querying a Bioinformatic Data Sources Registry with Concept Lattices

  • Nizar Messai
  • Marie-Dominique Devignes
  • Amedeo Napoli
  • Malika Smaïl-Tabbone
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3596)


Bioinformatic data sources available on the web are multiple and heterogenous. The lack of documentation and the difficulty of interaction with these data banks require users competence in both informatics and biological fields for an optimal use of sources contents that remain rather under exploited. In this paper we present an approach based on formal concept analysis to classify and search relevant bioinformatic data sources for a given user query. It consists in building the concept lattice from the binary relation between bioinformatic data sources and their associated metadata. The concept built from a given user query is then merged into the concept lattice. The result is given by the extraction of the set of sources belonging to the extents of the query concept subsumers in the resulting concept lattice. The sources ranking is given by the concept specificity order in the concept lattice. An improvement of the approach consists in automatic refinement of the query thanks to domain ontologies. Two forms of refinement are possible by generalisation and by specialisation.


Information Retrieval Concept Lattice Domain Ontology User Query Formal Context 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Buttler, D., Coleman, M., Critchlow, T., Fileto, R., Han, W., Pu, C., Rocco, D., Xiong, L.: Querying Multiple Bioinformatics Information Sources: Can Semantic Web Research Help? SIGMOD Record 31(4), 59–64 (December 2002)CrossRefGoogle Scholar
  2. 2.
    Carmel, D., Farchi, E., Petruschka, Y., Soffer, A.: Automatic query refinement using lexical affinities with maximal information gain. In: SIGIR 2002: Proceedings of the 25th annual international ACM SIGIR conference on Research and development in information retrieval, August 2002, pp. 283–290. ACM Press, New York (2002)CrossRefGoogle Scholar
  3. 3.
    Carpineto, C., Romano, G.: A lattice conceptual clustering system and its application to browsing retrieval. Machine Learning 24(2), 95–122 (August 1996)Google Scholar
  4. 4.
    Carpineto, C., Romano, G.: Order-theoretical ranking. Journal of the American Society for Information Science 51(7), 587–601 (May 2000)CrossRefGoogle Scholar
  5. 5.
    Carpineto, C., Romano, G.: Concept Data Analysis: Theory and Applications. John Wiley & Sons, Chichester (2004)zbMATHCrossRefGoogle Scholar
  6. 6.
    Davidson, S.B., Crabtree, J., Brunk, B.P., Schug, J., Tannen, V., Overton, G.C., Stoeckert, C.J.: K2/Kleisli and GUS: experiments in integrated access to genomic data sources. IBM Systems Journal 40(2), 512–531 (2001)CrossRefGoogle Scholar
  7. 7.
    Discala, C., Benigni, X., Barillot, E., Vaysseix, G.: DBCAT: a catalog of 500 biological databases. Nucleic Acids Research 28(1), 8–9 (January 2000)CrossRefGoogle Scholar
  8. 8.
    Galperin, M.Y.: The Molecular Biology Database Collection: 2004 update. Nucleic Acids Research 32, D4–D22 (2004)Google Scholar
  9. 9.
    Ganesan, P., Garcia-Molina, H., Widom, J.: Exploiting hierarchical domain structure to compute similarity. ACM Transactions on Information Systems (TOIS) 21(1), 64–93 (January 2003)CrossRefGoogle Scholar
  10. 10.
    Ganter, B., Wille, R.: Formal Concept Analysis. Mathematical Foundations. Springer, Heidelberg (1999)zbMATHGoogle Scholar
  11. 11.
    Goble, C.A., Stevens, R., Ng, G., Bechhofer, S., Paton, N.W., Baker, P.G., Peim, M., Brass, A.: Transparent Access to Multiple Bioinformatics Information Sources. IBM Systems Journal 40(2), 532–551 (2001)CrossRefGoogle Scholar
  12. 12.
    Godin, R., Mineau, G.W., Missaoui, R.: Méthodes de classification conceptuelle basées sur les treillis de Galois et applications. Revue d’intelligence artificielle 9(2), 105–137 (1995)Google Scholar
  13. 13.
    Godin, R., Missaoui, R., Alaoui, H.: Incremental Concept Formation Algorithms Based on Galois (Concept) Lattices. Computational Intelligence 11, 246–267 (1995)CrossRefGoogle Scholar
  14. 14.
    Kohler, J., Philippi, S., Lange, M.: SEMEDA: ontology based semantic integration of biological databases. Bioinformatics 19(18), 2420–2427 (December 2003)CrossRefGoogle Scholar
  15. 15.
    Kuznetsov, S.O., Obiedkov, S.A.: Comparing Performance of Algorithms for Generating Concept Lattices. Journal of Experimental & Theoretical Artificial Intelligence 14, 189–216 (2002)zbMATHCrossRefGoogle Scholar
  16. 16.
    Lord, P., Bechhofer, S., Wilkinson, M.D., Schiltz, G., Gessler, D., Hull, D., Goble, C., Stein, L.: Applying semantic web services to Bioinformatics: Experiences gained, lessons learnt. In: McIlraith, S.A., Plexousakis, D., van Harmelen, F. (eds.) ISWC 2004. LNCS, vol. 3298, pp. 350–364. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  17. 17.
    Oinn, T., Addis, M., Ferris, J., Marvin, D., Greenwood, M., Carver, T., Matthew, Pocock, Wipat, A., Li, P.: Taverna: a tool for the composition and enactment of bioinformatics workflows. Bioinformatics 20, 3045–3054 (2004)CrossRefGoogle Scholar
  18. 18.
    Osman, S.: Réalisation d’un annuaire de sources de données génomiques en vue de la collecte et de l’intégration de données sur le web. Rapport de master professionnel sciences et techniques mention informatique, spécialité bio-informatique, Université Bordeaux I, Université Victor Segalen, Bordeaux II (Septembre 2004)Google Scholar
  19. 19.
    Pernelle, N., Rousset, M.-C., Soldano, H., Ventos, V.: ZooM: a nested Galois lattices-based system for conceptual clustering. nested Galois lattices-based system for conceptual clustering. Journal of Experimental and Theoretical Artifial Intelligence (JETAI) 14(2), 157–187 (September 2002)Google Scholar
  20. 20.
    Priss, U.: Lattice-based Information Retrieval. Knowledge Organization 27(3), 132–142 (2000)Google Scholar
  21. 21.
    Safar, B., Kefi, H., Reynaud, C.: OntoRefiner, a user query refinement interface usable for Semantic Web Portals. In: Proceedings of Application of Semantic Web technologies to Web Communities, Workshop ECAI 2004, Valencia, Spain, August 2004, pp. 65–79 (2004)Google Scholar
  22. 22.
    Stumme, G., Taouil, R., Bastide, Y., Lakhal, L.: Conceptual Clustering with Iceberg Concept Lattices. In: Proceeding GI-Fachgruppentreffen Maschinelles Lernen (FGML 2001), Universitat Dortmund 763 (Oktober 2001)Google Scholar
  23. 23.
    van der Merwe, D., Obiedkov, S.A., Kourie, D.G.: AddIntent: A New Incremental Algorithm for Constructing Concept Lattices. In: Eklund, P. (ed.) ICFCA 2004. LNCS (LNAI), vol. 2961, pp. 372–385. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  24. 24.
    Wille, R.: Restructuring lattice theory: an approach based on hierarchies of concepts. Ordered Sets, 445–470 (1982)Google Scholar
  25. 25.
    Wille, R.: Line diagrams of hierarchical concept systems. International Classification 2, 77–86 (1984)Google Scholar
  26. 26.
    Wroe, C., Stevens, R., Goble, C., Roberts, A., Greenwood, M.: A suite of DAML+OIL Ontologies to Describe Bioinformatics Web Services and Data. International Journal of Cooperative Information Systems 12(2), 197–224 (March 2003)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2005

Authors and Affiliations

  • Nizar Messai
    • 1
  • Marie-Dominique Devignes
    • 1
  • Amedeo Napoli
    • 1
  • Malika Smaïl-Tabbone
    • 1
  1. 1.UMR 7503 LORIAVandœuvre-lès-NancyFrance

Personalised recommendations