Advertisement

Abstract

The aim of this paper is to present several examples illustrating challenges (local) negation in concept graphs yields with respect to semantical entailment. The examples are mainly concerned with inequality and with the impact missing information can have on relationships. The problems described here arose during the development of a logic system of protoconcept graphs (cf. [Kl05]), hence they will serve as exemplification.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [Da03a]
    Dau, F.: The Logic System of Concept Graphs with Negations (and its Relationship to Predicate Logic). Springer, Berlin (2003)CrossRefGoogle Scholar
  2. [DK03]
    Dau, F., Klinger, J.: From Formal Concept Analysis to Contextual Logic. FB4– Preprint, TU Darmstadt (2003)Google Scholar
  3. [Ke01]
    Kerdiles, G.N.: Saying It with Pictures: a logical landscape of conceptual graphs, http://staff.science.uva.nl/kerdiles/
  4. [Kl05]
    Klinger, J.: The Logic System of Protoconcept Graphs. Preprint, FB Mathematik, TU Darmstadt (2005)Google Scholar
  5. [KV03]
    Klinger, J., Vormbrock, B.: Contextual Boolean Logic: How did it develop? In: Ganter, B., de Moor, A. (eds.) Using Conceptual Structures. Contributions to ICCS 2003, pp. 143–156. Shaker Verlag, Aachen (2003)Google Scholar
  6. [Pr98a]
    Prediger, S.: Kontextuelle Urteilslogik mit Begriffsgraphen. Shaker Verlag, Aachen (1998)zbMATHGoogle Scholar
  7. [Pr98b]
    Prediger, S.: Simple Concept Graphs: A Logic Approach. In: Mugnier, M.-L., Chein, M. (eds.) ICCS 1998. LNCS (LNAI), vol. 1453, pp. 225–239. Springer, Heidelberg (1998)CrossRefGoogle Scholar
  8. [Wi96]
    Wille, R.: Restructuring Mathematical Logic: An Approach Based on Peirce’s Pragmatism. In: Ursini, A., Agliano, P. (eds.) Logic and Algebra, pp. 267–281. Marcel Dekker, New York (1996)Google Scholar
  9. [Wi00a]
    Wille, R.: Boolean Concept Logic. In: Ganter, B., Mineau, G.W. (eds.) ICCS 2000. LNCS, vol. 1867, pp. 317–331. Springer, Heidelberg (2000)CrossRefGoogle Scholar
  10. [Wi00b]
    Wille, R.: Contextual Logic Summary. In: Stumme, G. (ed.) Working with Conceptual Structures. Contributions to ICCS 2000, pp. 256–276. Shaker Verlag, Aachen (2000)Google Scholar
  11. [Wi02a]
    Wille, R.: Existential Graphs of Power Context Families. In: Priss, U., Corbett, D.R., Angelova, G. (eds.) ICCS 2002. LNCS (LNAI), vol. 2393, pp. 382–396. Springer, Heidelberg (2002)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2005

Authors and Affiliations

  • Julia Klinger
    • 1
  1. 1.Fachbereich MathematikTechnische Universität DarmstadtDarmstadt

Personalised recommendations