A main feature of many logics used in computer science is a means to express quantification. Usually, syntactical devices like variables and quantifiers are used for this purpose. In contrast to that, in conceptual graphs, a single syntactical item, the generic marker ‘*’ is used. Nonetheless, sometimes conceptual graphs with variables have to be considered. If the generic marker is replaced by variables, it has to be investigated how this syntactical difference is reflected by the semantics and transformation rules for conceptual graphs. In this paper, this task is carried out for the system of concept graph with cuts (CGwCs). Two different classes of CGwCs with variables are introduced, and for both, a semantics and an adequate calculus for CGwCs is provided.


Generic Marker Transformation Rule Conceptual Graph Married Person Fresh Variable 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Baget, J.F.: Homomorphismes d’hypergraphes pour la subsumption en RDF/RDFS. RSTI L’objet. In: LMO 2004, pp. 203–216 (2004)Google Scholar
  2. 2.
    Mugnier, M.-L.: Concept Types and Coreference in Simple Conceptual Graphs. In: Wolff, K.E., Pfeiffer, H.D., Delugach, H.S. (eds.) ICCS 2004. LNCS (LNAI), vol. 3127, pp. 303–318. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  3. 3.
    Dau, F.: The Logic System of Concept Graphs with Negation. LNCS (LNAI), vol. 2892. Springer, Heidelberg (2003)zbMATHCrossRefGoogle Scholar
  4. 4.
    Dau, F.: RDF as Graph-Based Diagrammatic Reasoning System: Syntax, Semantics, Calculus. Submitted to the 2nd European Semantic Web ConferenceGoogle Scholar
  5. 5.
    Dau, F.: Rhetorical Structures in Diagrammatic Reasoning Systems. Submitted to the symposium on Visual Languages and Human Centric Computing 2005Google Scholar
  6. 6.
    Hayes, P.: RDF Semantics: W3C Recommendation, February 10 (2004),
  7. 7.
    Klinger, J.: Semiconcept Graphs with Variables. In: Priss, U., Corbett, D.R., Angelova, G. (eds.) ICCS 2002. LNCS (LNAI), vol. 2393, p. 369. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  8. 8.
    Klinger, J.: The Logic System of Protoconcept Graphs. PhD-thesis (to appear)Google Scholar
  9. 9.
    Manola, F., Miller, E.: RDF Primer,
  10. 10.
    Peirce, C.S.: Collected Papers. Harvard University Press, Cambridge (1931–1935)Google Scholar
  11. 11.
    Sowa, J.F.: Conceptual Structures: Information Processing in Mind and Machine. The System Programming Series. Adison-Wesley, Reading (1984)zbMATHGoogle Scholar
  12. 12.
    Sowa, J.F.: Conceptual Graphs Summary. In: Nagle, T.E., Nagle, J.A., Gerholz, L.L., Eklund, P.W. (eds.) Conceptual Structures: current research and practice, pp. 3–51. Ellis Horwood (1992)Google Scholar
  13. 13.
    Sowa, J.F.: Logic: Graphical and Algebraic, Manuscript, Croton-on-Hudson (1997)Google Scholar
  14. 14.
    Wille, R.: Existential Concept Graphs of Power Context Families. In: Priss, U., Corbett, D.R., Angelova, G. (eds.) ICCS 2002. LNCS (LNAI), vol. 2393, p. 382. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  15. 15.
    Wille, R.: Implicational Concept Graphs. In: Wolff, K.E., Pfeiffer, H.D., Delugach, H.S. (eds.) ICCS 2004. LNCS (LNAI), vol. 3127, pp. 52–61. Springer, Heidelberg (2004)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2005

Authors and Affiliations

  • Frithjof Dau
    • 1
  1. 1.Fachbereich MathematikTechnische Universität DarmstadtDarmstadt

Personalised recommendations