Skip to main content

Spatial Representation and Navigation in a Bio-inspired Robot

  • Chapter
Biomimetic Neural Learning for Intelligent Robots

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 3575))

Abstract

A biologically inspired computational model of rodent repre-sentation–based (locale) navigation is presented. The model combines visual input in the form of realistic two dimensional grey-scale images and odometer signals to drive the firing of simulated place and head direction cells via Hebbian synapses. The space representation is built incrementally and on-line without any prior information about the environment and consists of a large population of location-sensitive units (place cells) with overlapping receptive fields. Goal navigation is performed using reinforcement learning in continuous state and action spaces, where the state space is represented by population activity of the place cells. The model is able to reproduce a number of behavioral and neuro-physiological data on rodents. Performance of the model was tested on both simulated and real mobile Khepera robots in a set of behavioral tasks and is comparable to the performance of animals in similar tasks.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Franz, M.O., Mallot, H.A.: Biomimetic robot navigation. Robotics and Autonomous Systems 30, 133–153 (2000)

    Article  Google Scholar 

  2. Jeffery, K.J. (ed.): The neurobiology of spatial behavior. Oxford University Press, Oxford (2003)

    Google Scholar 

  3. Sutton, R., Barto, A.G.: Reinforcement Learning - An Introduction. MIT Press, Cambridge (1998)

    Google Scholar 

  4. O’Keefe, J., Dostrovsky, J.: The hippocampus as a spatial map. preliminary evidence from unit activity in the freely-moving rat. Brain Research 34, 171–175 (1971)

    Article  Google Scholar 

  5. Wilson, M.A., McNaughton, B.L.: Dynamics of the hippocampal ensemble code for space. Science 261, 1055–1058 (1993)

    Article  Google Scholar 

  6. Taube, J.S., Muller, R.I., Ranck Jr., J.B.: Head direction cells recorded from the postsubiculum in freely moving rats. I. Description and quantitative analysis. Journal of Neuroscience 10, 420–435 (1990)

    Google Scholar 

  7. Knierim, J.J., Kudrimoti, H.S., McNaughton, B.L.: Place cells, head direction cells, and the learning of landmark stability. Journal of Neuroscience 15, 1648–1659 (1995)

    Google Scholar 

  8. Muller, R.U., Kubie, J.L.: The effects of changes in the environment on the spatial firing of hippocampal complex-spike cells. Journal of Neuroscience 7, 1951–1968 (1987)

    Google Scholar 

  9. McNaughton, B.L., Barnes, C.A., Gerrard, J.L., Gothard, K., Jung, M.W., Knierim, J.J., Kudrimoti, H., Qin, Y., Skaggs, W.E., Suster, M., Weaver, K.L.: Deciphering the hippocampal polyglot: the hippocampus as a path integration system. J. Exp. Biol. 199, 173–185 (1996)

    Google Scholar 

  10. Schultz, W., Dayan, P., Montague, P.R.: A neural substrate of prediction and reward. Science 275, 1593–1599 (1997)

    Article  Google Scholar 

  11. Schultz, W.: Predictive Reward Signal of Dopamine Neurons. Journal of Neurophysiology 80, 1–27 (1998)

    Google Scholar 

  12. Freund, T.F., Powell, J.F., Smith, A.D.: Tyrosine hydroxylase-immunoreactive boutons in synaptic contact with identified striatonigral neurons, with particular reference to dendritic spines. Neuroscience 13, 1189–1215 (1984)

    Article  Google Scholar 

  13. Sesack, S.R., Pickel, V.M.: In the rat medial nucleus accumbens, hippocampal and catecholaminergic terminals converge on spiny neurons and are in apposition to each other. Brain Res. 527, 266–279 (1990)

    Article  Google Scholar 

  14. Eichenbaum, H., Stewart, C., Morris, R.G.M.: Hippocampal representation in place learning. Journal of Neuroscience 10(11), 3531–3542 (1990)

    Google Scholar 

  15. Sutherland, R.J., Rodriguez, A.J.: The role of the fornix/fimbria and some related subcortical structures in place learning and memory. Behavioral and Brain Research 32, 265–277 (1990)

    Article  Google Scholar 

  16. Redish, A.D.: Beyond the Cognitive Map, From Place Cells to Episodic Memory. MIT Press-Bradford Books, London (1999)

    Google Scholar 

  17. Morris, R.G.M.: Spatial localization does not require the presence of local cues. Learning and Motivation 12, 239–260 (1981)

    Article  MATH  Google Scholar 

  18. Packard, M.G., McGaugh, J.L.: Double dissociation of fornix and caudate nucleus lesions on acquisition of two water maze tasks: Further evidence for multiple memory systems. Behavioral Neuroscience 106(3), 439–446 (1992)

    Article  Google Scholar 

  19. Trullier, O., Wiener, S.I., Berthoz, A., Meyer, J.A.: Biologically-based artificial navigation systems: Review and prospects. Progress in Neurobiology 51, 483–544 (1997)

    Article  Google Scholar 

  20. Recce, M., Harris, K.D.: Memory for places: A navigational model in support of Marr’s theory of hippocampal function. Hippocampus 6, 85–123 (1996)

    Article  Google Scholar 

  21. Burgess, N., Donnett, J.G., Jeffery, K.J., O’Keefe, J.: Robotic and neuronal simulation of the hippocampus and rat navigation. Phil. Trans. R. Soc. Lond. B 352, 1535–1543 (1997)

    Article  Google Scholar 

  22. Burgess, N., Jackson, A., Hartley, T., O’Keefe, J.: Predictions derived from modelling the hippocampal role in navigation. Biol. Cybern. 83, 301–312 (2000)

    Article  Google Scholar 

  23. Burgess, N., Recce, M., O’Keefe, J.: A model of hippocampal function. Neural Networks 7, 1065–1081 (1994)

    Article  MATH  Google Scholar 

  24. O’Keefe, J., Burgess, N.: Geometric determinants of the place fields of hippocampal neurons. Nature 381, 425–428 (1996)

    Article  Google Scholar 

  25. Georgopoulos, A.P., Kettner, R.E., Schwartz, A.: Primate motor cortex and free arm movements to visual targets in three-dimensional space. II. Coding of the direction of movement by a neuronal population. Neuroscience 8, 2928–2937 (1988)

    Google Scholar 

  26. Gaussier, P., LeprĂŞtre, S., Joulain, C., Revel, A., Quoy, M., Banquet, J.P.: Animal and robot learning: Experiments and models about visual navigation. In: 7th European Workshop on Learning Robots, Edinburgh, UK (1998)

    Google Scholar 

  27. Gaussier, P., Joulain, C., Banquet, J.P., Leprêtre, S., Revel, A.: The visual homing problem: An example of robotics/biology cross fertilization. Robotics and Autonomous Systems 30, 155–180 (2000)

    Article  Google Scholar 

  28. Gaussier, P., Revel, A., Banquet, J.P., Babeau, V.: From view cells and place cells to cognitive map learning: processing stages of the hippocampal system. Biol. Cybern. 86, 15–28 (2002)

    Article  MATH  Google Scholar 

  29. Arleo, A., Gerstner, W.: Spatial cognition and neuro-mimetic navigation: A model of hippocampal place cell activity. Biological Cybernetics, Special Issue on Navigation in Biological and Artificial Systems 83, 287–299 (2000)

    Google Scholar 

  30. Arleo, A., Smeraldi, F., Hug, S., Gerstner, W.: Place cells and spatial navigation based on 2d visual feature extraction, path integration, and reinforcement learning. In: Leen, T.K., Dietterich, T.G., Tresp, V. (eds.) Advances in Neural Information Processing Systems 13, pp. 89–95. MIT Press, Cambridge (2001)

    Google Scholar 

  31. Arleo, A., Smeraldi, F., Gerstner, W.: Cognitive navigation based on nonuniform gabor space sampling, unsupervised growing networks, and reinforcement learning. IEEE Transactions on Neural Networks 15, 639–652 (2004)

    Article  Google Scholar 

  32. Zhang, K.: Representation of spatial orientation by the intrinsic dynamics of the head-direction cell ensemble: A theory. Journal of Neuroscience 16(6), 2112–2126 (1996)

    Google Scholar 

  33. Arleo, A., Gerstner, W.: Spatial orientation in navigating agents: Modeling head-direction cells. Neurocomputing 38–40, 1059–1065 (2001)

    Article  Google Scholar 

  34. Skaggs, W.E., Knierim, J.J., Kudrimoti, H.S., McNaughton, B.L.: A model of the neural basis of the rat’s sense of direction. In: Tesauro, G., Touretzky, D.S., Leen, T.K. (eds.) Advances in Neural Information Processing Systems 7, pp. 173–180. MIT Press, Cambridge (1995)

    Google Scholar 

  35. Etienne, A.S., Jeffery, K.J.: Path integration in mammals. Hippocampus (2004)

    Google Scholar 

  36. Daugman, J.G.: Two-dimensional spectral analysis of cortical receptive field profiles. Vision Research 20, 847–856 (1980)

    Article  Google Scholar 

  37. Pouget, A., Dayan, P., Zemel, R.S.: Inference and computation with population codes. Annu. Rev. Neurosci. 26, 381–410 (2003)

    Article  Google Scholar 

  38. Strösslin, T., Gerstner, W.: Reinforcement learning in continuous state and action space. In: Kaynak, O., Alpaydın, E., Oja, E., Xu, L. (eds.) ICANN 2003 and ICONIP 2003. LNCS, vol. 2714. Springer, Heidelberg (2003)

    Google Scholar 

  39. Foster, D.J., Morris, R.G.M., Dayan, P.: A model of hippocampally dependent navigation, using the temporal difference learning rule. Hippocampus 10(1), 1–16 (2000)

    Article  Google Scholar 

  40. Doya, K.: Reinforcement learning in continuous time and space. Neural Computation 12, 219–245 (2000)

    Article  Google Scholar 

  41. Tolman, E.C.: Cognitive maps in rats and men. Psychological Review 55, 189–208 (1948)

    Article  Google Scholar 

  42. Quirk, G.J., Muller, R.U., Kubie, J.L.: The firing of hippocampal place cells in the dark depends on the rat’s recent experience. Journal of Neuroscience 10, 2008–2017 (1990)

    Google Scholar 

  43. Morris, R.G.M., Garrud, P., Rawlins, J.N.P., O’Keefe, J.: Place navigation impaired in rats with hippocampal lesions. Nature 297, 681–683 (1982)

    Article  Google Scholar 

  44. Hughes, A.: The topography of vision in mammals of contrasting life style: Comparative optics and retinal organisation. In: Crescitelli, F. (ed.) The Visual System in Vertebrates. Handbook of Sensory Physiology, vol. 7/5, pp. 613–756. Springer, Heidelberg (1977)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Sheynikhovich, D., Chavarriaga, R., Strösslin, T., Gerstner, W. (2005). Spatial Representation and Navigation in a Bio-inspired Robot. In: Wermter, S., Palm, G., Elshaw, M. (eds) Biomimetic Neural Learning for Intelligent Robots. Lecture Notes in Computer Science(), vol 3575. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11521082_15

Download citation

  • DOI: https://doi.org/10.1007/11521082_15

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-27440-7

  • Online ISBN: 978-3-540-31896-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics