NP-Completeness of Deciding Binary Genetic Encodability

  • Andreas Blass
  • Boris Mitavskiy
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3469)


In previous work of the second author a rigorous mathematical foundation for re-encoding one evolutionary search algorithm by another has been developed. A natural issue to consider then is the complexity of deciding whether or not a given evolutionary algorithm can be re-encoded by one of the standard classical evolutionary algorithms such as a binary genetic algorithm. In the current paper we prove that, in general, this decision problem is NP-complete.


Genetic Algorithm Search Space Evolutionary Algorithm Polynomial Time Search System 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Davis, L.: Applying Adoptive Algorithms to Epistatic Domains. In: Proceedings of the International Joint Conference on Artificial Intelligence, pp. 162–164 (1985)Google Scholar
  2. 2.
    Garey, M., Johnson, D.: Computers and Intractability. A Guide to the Theory of NP-Completeness. W. H. Freeman and Company, New York (1979)zbMATHGoogle Scholar
  3. 3.
    Mac Lane, S.: Categories for the Working Mathematician. Graduate Texts in Mathematics 5. Springer, Heidelberg (1971)Google Scholar
  4. 4.
    Michalewicz, Z.: Genetic algorithms + data structures = evolution programs. Springer, Heidelberg (1996)zbMATHGoogle Scholar
  5. 5.
    Mitavskiy, B.: Crossover invariant subsets of the search space for evolutionary algorithms. Evolutionary Computation 12(1), 19–46 (2004), CrossRefGoogle Scholar
  6. 6.
    Mitavskiy, B.: Comparing evolutionary computation techniques via their representation. In: Cantú-Paz, E., et al. (eds.) Proceedings of the Genetic and Evolutionary Computation Conference (GECCO), vol. 1, pp. 1196–1209. Springer, Heidelberg (2003)Google Scholar
  7. 7.
    Mitavskiy, B.: A category theoretic method for comparing evolutionary computation techniques via their representation. In: ten-Cate, B. (ed.) Proceedings of the Eighth ESSLLI Student Session, pp. 201–210 (2003)Google Scholar
  8. 8.
    Poli, R.: Hyperschema Theory for GP with One-Point Crossover, Building Blocks, and Some New Results in GA Theory. In: Poli, R., Banzhaf, W., Langdon, W.B., Miller, J., Nordin, P., Fogarty, T.C. (eds.) EuroGP 2000. LNCS, vol. 1802, pp. 163–180. Springer, Heidelberg (2000)CrossRefGoogle Scholar
  9. 9.
    Radcliffe, N.: The algebra of genetic algorithms. Annals ofMathematics and Artificial Intelligence 10, 339–384 (1994), zbMATHCrossRefMathSciNetGoogle Scholar
  10. 10.
    Rothlauf, F., Goldberg, D., Heinzl, A.: Network random keys - a tree representation scheme for genetic and evolutionary algorithms. Evolutionary Computation 10(1), 75–97 (2002)CrossRefGoogle Scholar
  11. 11.
    Rowe, J., Vose, M., Wright, A.: Group properties of crossover and mutation. Evolutionary Computation 10(2), 151–184 (2002)CrossRefGoogle Scholar
  12. 12.
    Stephens, C.: Some exact results from a coarse grained formulation of genetic dynamics. In: Proceedings of the Genetic and Evolutionary Computation Conference (GECCO), pp. 631–638 (2001)Google Scholar
  13. 13.
    Vose, M.: The Simple Genetic Algorithm: Foundations and Theory. MIT Press, Cambridge (1999)zbMATHGoogle Scholar
  14. 14.
    Vose, M., Wright, A.: Form invariance and implicit parallelism. Evolutionary Computation 9(3), 355–370 (2001)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2005

Authors and Affiliations

  • Andreas Blass
    • 1
  • Boris Mitavskiy
    • 2
  1. 1.Department of MathematicsUniversity of MichiganAnn ArborUnited States
  2. 2.School of Computer ScienceUniversity of BirminghamBirminghamGreat Britain

Personalised recommendations