Skip to main content

Volatility Modelling of Multivariate Financial Time Series by Using ICA-GARCH Models

  • Conference paper

Part of the Lecture Notes in Computer Science book series (LNISA,volume 3578)

Abstract

Volatility modelling of asset returns is an important aspect for many financial applications, e.g., option pricing and risk management. GARCH models are usually used to model the volatility processes of financial time series. However, multivariate GARCH modelling of volatilities is still a challenge due to the complexity of parameters estimation. To solve this problem, we suggest using Independent Component Analysis (ICA) for transforming the multivariate time series into statistically independent time series. Then, we propose the ICA-GARCH model which is computationally efficient to estimate the volatilities. The experimental results show that this method is more effective to model multivariate time series than existing methods, e.g., PCA-GARCH.

Keywords

  • Financial Engineering
  • GARCH
  • ICA
  • Multivariate Time Series
  • Volatility

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/11508069_74
  • Chapter length: 9 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   109.00
Price excludes VAT (USA)
  • ISBN: 978-3-540-31693-0
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   149.00
Price excludes VAT (USA)

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Alexander, C.O.: Orthogonal GARCH. In: Alexander, C.O. (ed.) Mastering Risk. Financial Times, vol. 2. Prentice Hall, Englewood Cliffs (2001)

    Google Scholar 

  2. Bollerslev, T.: Generalized autoregressive conditional heteroscedasticity. Journal of Econometrics 31(3), 307–327 (1986)

    CrossRef  MATH  MathSciNet  Google Scholar 

  3. Comon, P.: Independent component analysis: a new concept? Signal Processing 36, 287–314 (1994)

    CrossRef  MATH  Google Scholar 

  4. Engle, R.F.: Autoregressive conditional heteroscedasticity with estimates of the variance of the U. K. inflation. Econometrica 50(4), 987–1008 (1982)

    CrossRef  MATH  MathSciNet  Google Scholar 

  5. Hyvarinen, A.: Fast and robust fixed-point algorithms for independent component analysis. IEEE Transactions on Neural Networks 10(3), 626–634 (1999)

    CrossRef  Google Scholar 

  6. Hyvarinen, A., Oja, E.: A fast fixed-point algorithm for independent component analysis. Neural Computation 9, 1483–1492 (1997)

    CrossRef  Google Scholar 

  7. Wong, A.S.K., Vlaar, P.J.G.: modelling time-varying correlations of financial markets, WO Research Memoranda (discontinued) 739, Netherlands Central Bank, Research Department (2003)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2005 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Wu, E.H.C., Yu, P.L.H. (2005). Volatility Modelling of Multivariate Financial Time Series by Using ICA-GARCH Models. In: Gallagher, M., Hogan, J.P., Maire, F. (eds) Intelligent Data Engineering and Automated Learning - IDEAL 2005. IDEAL 2005. Lecture Notes in Computer Science, vol 3578. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11508069_74

Download citation

  • DOI: https://doi.org/10.1007/11508069_74

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-26972-4

  • Online ISBN: 978-3-540-31693-0

  • eBook Packages: Computer ScienceComputer Science (R0)