Skip to main content

Heusler Alloyed Electrodes Integrated in Magnetic Tunnel-Junctions

  • Chapter
  • First Online:
  • 468 Accesses

Part of the book series: Lecture Notes in Physics ((LNP,volume 676))

Abstract

As a consequence of the growing theoretically predictions of 100% spin polarized half– and full–Heusler compounds over the past 6 years, Heusler alloys are among the most promising materials class for future magnetoelectronic and spintronic applications. We have integrated Co2MnSi as a representative of the full–Heusler compound family as one magnetic electrode into technological relevant magnetic tunnel junctions. The resulting tunnel magnetoresistance at 20 K was determined to be 95% corresponding to a Co2MnSi spin polarization of 66% in combination with an AlOx barrier thickness of 1.8 nm. For magnetic tunnel junctions prepared with an initially larger Al layer prior to oxidation the tunnel magnetoresistance at 20 K increases to about 108% associated with a Co2MnSi spin polarization of 72% clearly proving that Co2MnSi is already superior to 3d-based magnetic elements or their alloys. The corresponding room temperature values of the tunnel magnetoresistance are 33% and 41%, respectively. Structural and magnetic properties of the Co2MnSi AlOx – barrier interface have been studied with X-ray diffraction, electron and X-ray absorption spectroscopy and X-ray magnetic circular dichroism and it is shown that the ferromagnetic order of Mn and Co spins at this interface is only induced in optimally annealed Co2MnSi layer. The underlying atomic ordering mechanism responsible for achieving about its theoretical magnetic moment could be assigned to the elimination of Co-Si antisite defects whereas the reduction of Co-Mn antisite defects results in large tunnel magnetoresistance. The presence of a step like tunnel barrier which is already created during plasma oxidation while preparing the AlOx tunnel barrier has been identified as the current limitation to achieve larger tunnel magnetoresistance and hence larger spin polarization and is a direct consequence of the oxygen affinity of the Co2MnSi - Heusler elements Mn and Si.

This is a preview of subscription content, log in via an institution.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. P. Grünberg, R. Schreiber, Y. Pang, M. B. Brodsky, and H. Sowers: Phys. Rev. Lett. 57, 2442 (1986)

    Article  Google Scholar 

  2. M.N. Baibich, J.M. Broto, A. Fert, F. Nguyen Van Dau, F. Petroff, P. Eitenne, G. Creuzet, A. Friederich, and J. Chazelas: Phys. Rev. Lett. 61, 2472 (1988)

    Article  CAS  Google Scholar 

  3. M. Julliere: Phys. Lett. 54A, 225 (1975)

    CAS  Google Scholar 

  4. J.S. Moodera, L.R. Kinder, T.M. Wong, and R. Meservey: Phys. Rev. Lett. 74, 3273 (1995)

    Article  CAS  Google Scholar 

  5. T. Miyazaki and N. Tezuka: J. Magn. Magn. Mater. 139, L231 (1995)

    CAS  Google Scholar 

  6. .A. Wolf, D.D. Awschalom, R.A. Buhrman, J.M. Daughton, S. von Molnár, M.L. Roukes, A.Y. Chtchelkanova, and D.M. Treger: Science 294, 1488 (2001)

    Article  CAS  Google Scholar 

  7. J.M.D. Coey and C.L. Chien: MRS Bulletin 28, 720 (2003)

    CAS  Google Scholar 

  8. C. Palmstrom: MRS Bulletin 28, 725 (2003)

    CAS  Google Scholar 

  9. R.A. de Groot. F.M. Mueller, P.G. van Engen, and K.H.J. Buschow: Phys. Rev. Lett. 50, 2024 (1983)

    Article  CAS  Google Scholar 

  10. J. Tobola, J. Pierre, S. Kaprzyk, R.V. Skolozdra, and M.A. Kouacou: J. Phys. Condens. Matter 10, 1013 (1998)

    Article  CAS  Google Scholar 

  11. J. Tobola and J. Pierre: J. Alloys Comp. 296, 243 (2000)

    Article  CAS  Google Scholar 

  12. I. Galanakis, P. H. Dederichs, and N. Papanikolaou: Phys. Rev. B 66, 134428 (2002)

    Google Scholar 

  13. S. Ishida, T. Masaki, S. Fujii, and S. Asano: Physica B 245, 1 (1998)

    Article  CAS  Google Scholar 

  14. A. Ayuela, J. Enkovaara, K. Ullakko, and R.M. Nieminen: J. Phys. Condens. Matter 11, 2017 (1999)

    Article  CAS  Google Scholar 

  15. A. Deb and Y. Sakurai: J. Phys. Condens. Matter 12, 2997 (2000)

    Article  CAS  Google Scholar 

  16. I. Galanakis, P. H. Dederichs, and N. Papanikolaou: Phys. Rev. B 66, 174429 (2002)

    Google Scholar 

  17. J. Nogues and I.K. Schuller: J. Magn. Magn. Mater. 192, 203 (1999)

    CAS  Google Scholar 

  18. A.E. Berkowitz and K. Takano: J. Magn. Magn. Mater. 200, 552 (1999)

    Article  CAS  Google Scholar 

  19. C.T. Tanaka, J. Nowak, and J.S. Moodera: J. Appl. Phys. 86, 6239 (1999)

    Article  CAS  Google Scholar 

  20. K. Inomata, S. Okamura, R. Goto, and N. Tezuka: Jpn. J. Appl. Phys. 42, L419 (2003)

    Article  CAS  Google Scholar 

  21. A. Thomas, Ph.D. thesis, Department of Physics, University of Bielefeld (2004)

    Google Scholar 

  22. P.J.~Brown, K.U.~Neumann, P.J.~Webster, and K.R.A.~Ziebeck: J. Phys. Condens. Matter 12, 1827 (2000)

    CAS  Google Scholar 

  23. R. Meservey, D. Pereskevopoulus, and P.M. Tedrow: Phys. Rev. Lett. 37, 858 (1976)

    Article  CAS  Google Scholar 

  24. R.C. O'Handley. In: Modern Magnetic Materials, (John Wiley & Sons, New York 2000) p. 100

    Google Scholar 

  25. L.J. Singh, Z.H. Barber, Y. Miyoshi, Y. Bugoslavsky, W.R. Branford, and L.F. Cohen: unpublished, preprint arXiv:cond-mat/031116

    Google Scholar 

  26. S. Kämmerer, A. Thomas, A. Hütten, and G. Reiss: Appl. Phys. Lett. 85, 79 (2004)

    Google Scholar 

  27. A. Hütten, S. Kämmerer, J. Schmalhorst, A. Thomas, and G. Reiss: Phys. Stat. Sol. (a), ) 201, 3271 (2004)

    Google Scholar 

  28. S. Kämmerer, S. Heitmann, D. Meyners, D. Sudfeld, A. Thomas, A. Hütten, and G. Reiss: J. Appl. Phys. 93, 7945 (2003)

    Google Scholar 

  29. A. Thomas, H. Brückl, M.D. Sacher, J. Schmalhorst, and G. Reiss: J. Vac. Sci. Technol. B 21, 2120 (2003)

    Article  CAS  Google Scholar 

  30. J.C. Slonczewski: Phys. Rev. B 39, 6995 (1989)

    Article  Google Scholar 

  31. A. Hütten, T. Hempel, S. Heitmann, and G. Reiss: Phys. Stat. Sol. (a) 189, 327 (2002)

    Article  Google Scholar 

  32. E.C. Stoner and E.P. Wohlfarth: Phil. Trans. R. Soc. Lond. A 240, 599 (1948)

    Google Scholar 

  33. R.M. Bozorth. In: Ferromagnetism (IEEE Press, New York 1978) p. 194

    Google Scholar 

  34. Lange's handbook of chemistry, ed by J. Dean, (McGraw-Hill Book Company, New York 1973)

    Google Scholar 

  35. J. Schmalhorst, S. Kämmerer, M. Sacher, G. Reiss, A. Hütten, and A. Scholl: Phys. Rev. B 70, 024426 (2004)

    Google Scholar 

  36. S. Kämmerer: Ph.D. thesis, Department of Physics, University of Bielefeld (2004)

    Google Scholar 

  37. W.F. Brinkman, R.C. Dynes, and J.M. Rowell: J. Appl. Phys. 41, 1915 (1970)

    Article  CAS  Google Scholar 

  38. S. Picozzi, A. Continenza, and A.J. Freeman: Phys. Rev. B 69, 094423 (2004)

    Article  Google Scholar 

  39. Reference database, International Centre for Diffraction Data (1999)

    Google Scholar 

  40. P.J. Webster: Contemp. Phys. 10, 559 (1969)

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

I. Galanakis P.H. Dederichs

Rights and permissions

Reprints and permissions

About this chapter

Cite this chapter

Hütten, A., Kämmerer, S., Schmalhorst, J., Reiss, G. Heusler Alloyed Electrodes Integrated in Magnetic Tunnel-Junctions. In: Galanakis, I., Dederichs, P. (eds) Half-metallic Alloys. Lecture Notes in Physics, vol 676. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11506256_8

Download citation

  • DOI: https://doi.org/10.1007/11506256_8

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-27719-4

  • Online ISBN: 978-3-540-31517-9

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics