Skip to main content

Role of Structural Defects on the Half-Metallic Character of Heusler Alloys and Their Junctions with Ge and GaAs

  • Chapter
  • First Online:
Half-metallic Alloys

Part of the book series: Lecture Notes in Physics ((LNP,volume 676))

Abstract

Heusler–alloys, such as Co2MnGe and Co2MnSi, predicted from firstprinciples to be half–metallic, have recently attracted great attention for spininjection purposes. However, spin polarizations of only 50%–60% were experimentally obtained for Heusler thin films – a decrease attributed to defects in the Mn and Co sublattices. We performed ab–initio FLAPW calculations in order to determine the effects of several types of defects (Co and Mn antisites, atomic swaps, etc.) on the electronic and magnetic properties of the bulk Heusler compounds. Our findings, in general agreement with experiments, show that Mn antisites have the lowest formation energy and retain the half–metallic character. On the other hand, Co antisites have a slightly higher formation energy and a dramatic effe

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. S. Fujii, S. Sugimura, Ishida, and S. Asano: J. Phys.: Condens. Matter2 8583 (1990)

    CAS  Google Scholar 

  2. S. Picozzi, A. Continenza, and A.J. Freeman: Phys. Rev. B66, 094421 (2002)

    Google Scholar 

  3. G.A.de Wijis and R.A. de Groot: Phys. Rev. B64, 020402 (2001)

    Google Scholar 

  4. A. Debernardi, M. Peressi, and A. Baldereschi: Mat. Sci. Eng. C23, 743 (2003)

    Google Scholar 

  5. I. Galanakis: J. Phys.: Condens. Matter16, 8007 (2004)

    CAS  Google Scholar 

  6. J.E. Sullivan and S.C. Erwin: unpublisehd; preprint arXiv::cond-mat/0110474

    Google Scholar 

  7. S. Picozzi, A. Continenza, and A.J. Freeman: J. Appl. Phys. 94, 4723 (2003); J. Phys. Chem. Solids 64, 1697 (2003)

    Article  CAS  Google Scholar 

  8. M. Raphael, B. Ravel, M. Willard, S. Cheng, B. Das, R. Stroud, K. Bussmann, J. Claassen, and V. Harris: Appl. Phys. Lett. 79, 4396 (2001)

    Article  CAS  Google Scholar 

  9. B. Ravel et al.: Appl. Phys. Lett. 81, 2812 (2002)

    Article  CAS  Google Scholar 

  10. M.P. Raphael, S.F. Cheng, B.N. Das, B. Ravel, B. Nadgorny, G. Trotter, E.E. Carpenter and V.G. Harris: MRS Proceedings, Spring meeting 2001

    Google Scholar 

  11. T. Ambrose, J.J. Krebs, and G.A. Prinz: J. Appl. Phys. 87, 5463 (2000)

    Article  CAS  Google Scholar 

  12. B. Ravel, M.P.Raphael, V.G.Harris, and Q. Huang: Phys. Rev. B 65, 184431 (2002)

    Article  Google Scholar 

  13. S. Ishida, T. Masaki, S. Fujii, and S. Asano: Physica B 245, 1 (1998)

    Article  CAS  Google Scholar 

  14. D. Orgassa, H. Fujiwara, T.C. Schulthess, and W.H. Butler: Phys. Rev. B 60, 13237 (1999); D. Orgassa, H. Fujiwara, T.C. Schulthess,and W. H. Butler: J. Appl. Phys. 87, 5870 (2000)

    Article  CAS  Google Scholar 

  15. S. Picozzi, A. Continenza, and A.J. Freeman: Phys. Rev. B 69, 094423 (2004)

    Article  Google Scholar 

  16. H.J.F. Jansen, and A.J. Freeman: Phys. Rev. B 30, 561 (1984); E. Wimmer, H. Krakauer, M. Weinert, and A.J. Freeman: Phys. Rev. B 24, 864 (1981) and references therein

    CAS  Google Scholar 

  17. U. von Barth and L. Hedin: J. Phys. C 5, 1629 (1972)

    CAS  Google Scholar 

  18. J.P Perdew and Y. Wang: Phys. Rev. B 45, 13244 (1992); J.P. Perdew, K. Burke, and M. Ernzernhof: Phys. Rev. Lett. 77, 3865 (1996)

    Google Scholar 

  19. H.J. Monkhorst and J.D. Pack: Phys. Rev. B 13, 5188 (1976)

    Article  Google Scholar 

  20. S.B. Zhang et al.: Phys. Rev B 57, 9642 (1998)

    CAS  Google Scholar 

  21. C.G. Van de Walle et al.: Phys. Rev. B 47, 9425 (1993)

    CAS  Google Scholar 

  22. G. Schmidt, D. Ferrand, L.W. Molenkamp, A.T. Filip, and B.J. van Wees: Phys. Rev. B 62, R4790 (2000)

    CAS  Google Scholar 

  23. In the isolated point case: i) when Co substitutes for Mn, the first coordination shell of the defect is made of 8 Co atoms; ii) in the Mn antisite case, the first coordination shell of the defect is made of 4 Mn and 4 Si atoms. On the other hand, in the Co–Mn swap, the exchanged Mn has the first coordination shell made of 3 Mn, 1 Co and 4 Si atoms, whereas the exchanged Co has the first coordination shell made of 7 Co and 1 Mn atoms.

    Google Scholar 

  24. T. Asada and K. Terakura: Phys. Rev. B 47, 15992 (1993); T. Asada and K. Terakura: ibid. 46, 13599 (1992)

    Google Scholar 

  25. R. Fiederling, M. Klein, W. Ossau, G. Schmidt, A. Waag, and L.W. Molenkamp, Nature 402, 787 (1999)

    Google Scholar 

  26. For further details and for the band structure plots, we refer to reference [2].

    Google Scholar 

  27. The accuracy in the position of EF with respect to the minority VBM has been checked by increasing the number of k points and the kmax value, in order to achieve a higher level of convergence. We found that the relative alignment is stable to within 0.02 eV.

    Google Scholar 

  28. It was recently argued (see K. Capelle and G. Vignale: Phys. Rev. Lett. 86, 5546 (2001)) that spin density functional potentials are not unique functionals of the spin densities, so that our values could miss the contribution due to the discontinuity of the exchange–correlation potential, and so show a problem similar to the underestimation of the band–gap in semiconductors occurring in the original (i.e. not spin–resolved) DFT.

    Google Scholar 

  29. P.J. Webster: J. Phys. Chem. Solids 32, 1221 (1971)

    CAS  Google Scholar 

  30. A.G. Gavriliuk, G.N. Stepanov, and S.M. Irkaev: J. Appl. Phys. 77, 2648 (1995)

    Article  CAS  Google Scholar 

  31. S. Stadler, D.L. Harley, J.P. Craig, D.H. Minott, M.Khan, I. Dubenko, N. Ali, J. Dvorak, Y.U. Idzerda, D.A. Arena, and V.G. Harris: unpublished

    Google Scholar 

  32. P.J. Webster and K.R.A. Ziebeck. In: Alloys and Compounds of d-Elements with Main Group Elements. Part 2., Landolt-Börnstein, New Series, Group III, vol 19c, ed by H.R.J. Wijn, (Springer, Berlin 1988) pp 75–184

    Google Scholar 

  33. Y.M. Yarmoshenko, M.I. Katsnelson, E.I. Shreder, E.Z. Kurmaev, A. Slebarski, S. Plogmann, T. Schlatholter, J. Braun, and M. Neumann: Eur. Phys. J. B 2, 1 (1998); S. Plogmann, T. Schlatholter, J. Braun, M. Neumann, Y.M. Yarmoshenko, M.V. Yablonskikh, E.I. Shreder, E.Z. Kurmaev. A. Wrona, and A. Slebarski, Phys. Rev. B 60, 6428 (1999)

    Article  CAS  Google Scholar 

  34. J. Tersoff: J. Vac. Sci. Technol. B 4, 1066 (1986) and references therein

    Article  Google Scholar 

  35. J. Bardi, N. Binggeli, and A. Baldereschi: Phys. Rev. B 54, 11102 (1996)

    Article  Google Scholar 

  36. S. Picozzi, A. Continenza, S. Massidda, and A.J. Freeman: Phys. Rev. B 57, 4849 (1998); ibid.61, 16736 (2000)

    Article  CAS  Google Scholar 

  37. S.C. Erwin, S.-H. Lee, and M. Scheffler: Phys. Rev. B 65, 205422 (2002)

    Article  Google Scholar 

  38. S. Massidda, B.I. Min, and A.J. Freeman: Phys. Rev. B 59, 144 (1987) and references therein

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

I. Galanakis P.H. Dederichs

Rights and permissions

Reprints and permissions

About this chapter

Cite this chapter

Picozzi, S., Continenza, A., J. Freeman, A. Role of Structural Defects on the Half-Metallic Character of Heusler Alloys and Their Junctions with Ge and GaAs. In: Galanakis, I., Dederichs, P. (eds) Half-metallic Alloys. Lecture Notes in Physics, vol 676. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11506256_2

Download citation

  • DOI: https://doi.org/10.1007/11506256_2

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-27719-4

  • Online ISBN: 978-3-540-31517-9

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics