ID-based Authenticated Key Agreement for Low-Power Mobile Devices

  • Kyu Young Choi
  • Jung Yeon Hwang
  • Dong Hoon Lee
  • In Seog Seo
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3574)


In this paper we present an efficient ID-based authenticated key agreement (AKA) protocol by using bilinear maps, especially well suited to unbalanced computing environments : an ID-based AKA protocol for Server and Client. Particularly, considering low-power clients’ devices, we remove expensive operations such as bilinear maps from a client side. To achieve our goal we combine two notions, key agreement and ID-based authenticryption in which only designated verifier (or Sever) can verify the validity of a given transcript. We prove the security of our ID-based AKA protocols in therandom oracle model.


Random Oracle Model Forward Secrecy Corrupt Query 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Bresson, E., Chevassut, O., Essiari, A., Pointcheval, D.: Mutual Athentication and Group Key Agreement for Low-Power Mobile Devices. In: The 5th IEEE International Conference on Mobile and Wireless Communications Networks (2003)Google Scholar
  2. 2.
    Boneh, D., Franklin, M.: Identity-based encryption from the Weil pairing. In: Kilian, J. (ed.) CRYPTO 2001. LNCS, vol. 2139, pp. 213–229. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  3. 3.
    Barreto, P.S.L.M., Kim, H.Y., Lynn, B., Scott, M.: Efficient algorithms for pairing-based cryptosystems. In: Yung, M. (ed.) CRYPTO 2002. LNCS, vol. 2442, pp. 354–368. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  4. 4.
    Barreto, P.S.L.M., Lynn, B., Scott, M.: Efficient implementation of pairing based cryptosystems. Journal of Cryptology, 321–334 (2004)Google Scholar
  5. 5.
    Bellare, M., Rogaway, P.: Entity authentication and key distribution. In: Stinson, D.R. (ed.) CRYPTO 1993. LNCS, vol. 773, pp. 232–249. Springer, Heidelberg (1994)Google Scholar
  6. 6.
    Bellare, M., Rogaway, P.: Provably-Secure Session Key Distribution: The Three Party Case. In: Proc. of STOC 1995, pp. 57–66 (1995)Google Scholar
  7. 7.
    Bresson, E., Chevassut, O., Pointcheval, D.: Provably Authenticated Group Diffie- Hellman Key Exchange-The Dynamic Case. In: Boyd, C. (ed.) ASIACRYPT 2001. LNCS, vol. 2248, pp. 290–309. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  8. 8.
    Choi, K.Y., Hwang, J.Y., Lee, D.H.: Efficient ID-based Group Key Agreement with Bilinear Maps. In: Bao, F., Deng, R., Zhou, J. (eds.) PKC 2004. LNCS, vol. 2947, pp. 130–144. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  9. 9.
    Diffie, W., Hellman, M.: New Directions in Cryptography. IEEE Transactions on Information Theory 22(6), 644–654 (1976)zbMATHCrossRefMathSciNetGoogle Scholar
  10. 10.
    Galbraith, S.D., Harrison, K., Soldera, D.: Implementing the Tate pairing. In: Fieker, C., Kohel, D.R. (eds.) ANTS 2002. LNCS, vol. 2369, pp. 324–337. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  11. 11.
    Huang, Q., Cukier, J., Kobayashi, H., Liu, B., Zhang, J.: Fast Authenticated Key Establishment Protocols for Self-Organizing Sensor Networks. In: Proc. of WSNA 2003, Copyright 2003, ACM, New York (2003)Google Scholar
  12. 12.
    Hwang, J.Y., Lee, S.M., Lee, D.H.: Scalable key exchange transformation: from two-party to group. Electronics Letters 40(12) ( June 2004)Google Scholar
  13. 13.
    Kim, H.J., Lee, S.M., Lee, D.H.: Constant-Round Authenticated Gourp Key Exchange for Dynamic Groups. In: Lee, P.J. (ed.) ASIACRYPT 2004. LNCS, vol. 3329, pp. 245–259. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  14. 14.
    Katz, J., Yung, M.: Scalable Protocols for Authenticated Group Key Exchange. In: Boneh, D. (ed.) CRYPTO 2003. LNCS, vol. 2729, pp. 110–125. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  15. 15.
    McCullagh, N., Barreto, P.S.L.M.: Effcient and Foward-Secure Identity-Based Signcryption, Cryptology ePrint Archive, Report 2004/117,
  16. 16.
    McCullagh, N., Barreto, P.S.L.M.: A New Two-Party Identity-Based Authenticated Key Agreement. In: Menezes, A. (ed.) CT-RSA 2005. LNCS, vol. 3376, pp. 262–274. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  17. 17.
    Mitsunari, S., Sakai, R., Kasahara, M.: A new traitor tracing. Proc. of IEICE Trans. E85-A(2), 481–484 (2002)Google Scholar
  18. 18.
    Nam, J., Kim, S., Won, D.: Attacks on Bresson-Chevassut-Essiari-Pointcheval’s Group Key Agreement Scheme for Low-Power Mobile Devices. Proc. of IEEE Communications Letters (2005)Google Scholar
  19. 19.
    Nalla, D., Reddy, K.C.: ID-based tripartite Authenticated Key Agreement Protocols from pairings, Cryptology ePrint Archive, Report 2003/004,
  20. 20.
    Pointcheval, D., Stern, J.: Security arguments for digital signatures and blind signatures. J. of Cryptology 13, 361–396 (2000)zbMATHCrossRefGoogle Scholar
  21. 21.
    Smart, N.P.: An Identity based authenticated Key Agreement protocol based on the Weil pairing. Electronics Letters 38(13), 630–632 (2002)zbMATHCrossRefGoogle Scholar
  22. 22.
    Shamir, A.: Identity Based Cryptosystems and Signature Schemes. In: Blakely, G.R., Chaum, D. (eds.) CRYPTO 1984. LNCS, vol. 196, pp. 47–53. Springer, Heidelberg (1985)CrossRefGoogle Scholar
  23. 23.
    Zhang, F., Safavi-Naini, R., Susilo, W.: An Efficient Signature Scheme from Bilinear Pairings and Its Applications. In: Bao, F., Deng, R., Zhou, J. (eds.) PKC 2004. LNCS, vol. 2947, pp. 277–290. Springer, Heidelberg (2004)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2005

Authors and Affiliations

  • Kyu Young Choi
    • 1
  • Jung Yeon Hwang
    • 1
  • Dong Hoon Lee
    • 1
  • In Seog Seo
    • 2
  1. 1.Center for Information Security Technologies(CIST)Korea UniversitySeoulKorea
  2. 2.National Security Research Institute(NSRI)DaejeonKorea

Personalised recommendations