Advertisement

Group Signature Schemes with Membership Revocation for Large Groups

  • Toru Nakanishi
  • Fumiaki Kubooka
  • Naoto Hamada
  • Nobuo Funabiki
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3574)

Abstract

Group signature schemes with membership revocation have been intensively researched. However, signing and/or verification of some existing schemes have computational costs of O(R), where R is the number of revoked members. Existing schemes using a dynamic accumulator or a similar technique have efficient signing and verifications with O(1) complexity. However, before signing, the signer has to modify his secret key with O(N) or O(R) complexity, where N is the group size. Therefore, for larger groups, signers suffer from enormous costs. On the other hand, an efficient scheme for middle-scale groups with about 1,000 members is previously proposed, where the signer need not modify his secret key. However this scheme also suffers from heavy signing/verification costs for larger groups. In this paper, we adapt the middle-scale scheme to the larger groups. At the sacrifice of the group manager’s cost, our signing/verification has only O(1) complexity.

Keywords

Signature Scheme Basic Scheme Security Parameter Commitment Scheme Extended Scheme 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Ateniese, G., Camenisch, J., Joye, M., Tsudik, G.: A practical and provably secure coalition-resistant group signature scheme. In: Bellare, M. (ed.) CRYPTO 2000. LNCS, vol. 1880, pp. 255–270. Springer, Heidelberg (2000)CrossRefGoogle Scholar
  2. 2.
    Ateniese, G., Song, D., Tsudik, G.: Quasi-efficient revocation of group signatures. In: Blaze, M. (ed.) FC 2002. LNCS, vol. 2357, pp. 183–197. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  3. 3.
    Boneh, D., Boyen, X., Shacham, H.: Short group signatures. In: Franklin, M. (ed.) CRYPTO 2004. LNCS, vol. 3152, pp. 41–55. Springer, Heidelberg (2004)Google Scholar
  4. 4.
    Boneh, D., Shacham, H.: Group signatures with verifier-local revocation. In: Proc. ACM-CCS 2004, pp. 168–177 (2004)Google Scholar
  5. 5.
    Boudot, F.: Efficient proofs that a committed number lies in an interval. In: Preneel, B. (ed.) EUROCRYPT 2000. LNCS, vol. 1807, pp. 431–444. Springer, Heidelberg (2000)CrossRefGoogle Scholar
  6. 6.
    Bresson, E., Stern, J.: Group signature scheme with efficient revocation. In: Kim, K.-c. (ed.) PKC 2001. LNCS, vol. 1992, pp. 190–206. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  7. 7.
    Camenisch, J., Lysyanskaya, A.: Dynamic accumulators and application to efficient revocation of anonymous credentials. In: Yung, M. (ed.) CRYPTO 2002. LNCS, vol. 2442, pp. 61–76. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  8. 8.
    Camenisch, J., Lysyanskaya, A.: A signature scheme with efficient protocols. In: Cimato, S., Galdi, C., Persiano, G. (eds.) SCN 2002. LNCS, vol. 2576, pp. 268–289. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  9. 9.
    Camenisch, J., Michels, M.: Separability and efficiency for generic group signature schemes. In: Wiener, M. (ed.) CRYPTO 1999. LNCS, vol. 1666, pp. 413–430. Springer, Heidelberg (1999)Google Scholar
  10. 10.
    Damgård, I., Fujisaki, E.: A statistically-hiding integer commitment scheme based on groups with hidden order. In: Zheng, Y. (ed.) ASIACRYPT 2002. LNCS, vol. 2501, pp. 125–142. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  11. 11.
    Fiat, A., Shamir, A.: How to prove yourself: Practical solutions to identification and signature problems. In: Odlyzko, A.M. (ed.) CRYPTO 1986. LNCS, vol. 263, pp. 186–194. Springer, Heidelberg (1987)Google Scholar
  12. 12.
    Nakanishi, T., Sugiyama, Y.: A group signature scheme with efficient membership revocation for reasonable groups. In: Wang, H., Pieprzyk, J., Varadharajan, V. (eds.) ACISP 2004. LNCS, vol. 3108, pp. 336–347. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  13. 13.
    Tsudik, G., Xu, S.: Accumulating composites and improved group signing. In: Laih, C.-S. (ed.) ASIACRYPT 2003. LNCS, vol. 2894, pp. 269–286. Springer, Heidelberg (2003)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2005

Authors and Affiliations

  • Toru Nakanishi
    • 1
  • Fumiaki Kubooka
    • 1
  • Naoto Hamada
    • 1
  • Nobuo Funabiki
    • 1
  1. 1.Dept. of Communication Network EngineeringOkayama UnivJapan

Personalised recommendations