An (nt)-out-of-n Threshold Ring Signature Scheme

  • Toshiyuki Isshiki
  • Keisuke Tanaka
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3574)


In CRYPTO2002, Bresson, Stern, and Szydlo proposed a threshold ring signature scheme. Their scheme uses the notion of fair partition and is provably secure in the random oracle model. Their scheme is efficient when the number t of signers is small compared with the number n of group members, i.e., \(t={\mathcal O}(\log{n})\) (we call this scheme BSS scheme). However, it is inefficient when t is ω(logn).

In this paper, we propose a new threshold ring signature scheme which is efficient when the number of signers is large compared with the number n of group members, i.e., when the number t of non-signers in the group members is small compared with n. This scheme is very efficient when \(t={\mathcal O}(\log{n})\). This scheme has a kind of dual structure of BSS scheme which is inefficient when the number of signers is large compared with the number of group members. In order to construct our scheme, we modify the trap-door one-way permutations in the ring signature scheme, and use the combinatorial notion of fair partition. This scheme is provably secure in the random oracle model.


threshold ring signature random oracle model 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Alon, N., Yuster, R., Zwick, U.: Color-coding. Electronic Colloquium on Computational Complexity (ECCC) 1, 009 (1994) Full paper appears in J.ACM 42(4), 844-856 (July 1995)Google Scholar
  2. 2.
    Ateniese, G., Camenisch, J., Joye, M., Tsudik, G.: A practical and provably secure coalition-resistant group signature scheme. In: Bellare, M. (ed.) CRYPTO 2000. LNCS, vol. 1880, pp. 255–270. Springer, Heidelberg (2000)CrossRefGoogle Scholar
  3. 3.
    Barić, N., Pfizmann, B.: Collision-free accumulators and fail-stop signature schemes without trees. In: Fumy, W. (ed.) EUROCRYPT 1997. LNCS, vol. 1233, pp. 480–494. Springer, Heidelberg (1997)Google Scholar
  4. 4.
    Bresson, E., Stern, J., Szydlo, M.: Threshold Ring Signatures and Applications to Ad-hoc Groups. In: Yung [15], pp. 465–480Google Scholar
  5. 5.
    Camenisch, J., Lysyanskaya, A.: Efficient revocation of anonymous group membership. In: Yung [15], pp. 465–480Google Scholar
  6. 6.
    Camenisch, J., Michels, M.: Separability and efficiency for generic group signature schemes. In: Wiener, M. (ed.) CRYPTO 1999. LNCS, vol. 1666, pp. 106–121. Springer, Heidelberg (1999)Google Scholar
  7. 7.
    Camenisch, J., Stadler, M.: Efficient group signatures schemes for large groups. In: Kaliski Jr., B.S. (ed.) CRYPTO 1997. LNCS, vol. 1294, pp. 410–424. Springer, Heidelberg (1997)Google Scholar
  8. 8.
    Chaum, D., van Heijst, E.: Group Signatures. In: Davies, D.W. (ed.) EUROCRYPT 1991. LNCS, vol. 547, pp. 257–265. Springer, Heidelberg (1991)Google Scholar
  9. 9.
    Cramer, R., Damgård, I., Schoenmakers, B.: Proofs of partial knowledge and simplified design of witness hiding protocols. In: Desmedt, Y.G. (ed.) CRYPTO 1994. LNCS, vol. 839, pp. 174–187. Springer, Heidelberg (1994)Google Scholar
  10. 10.
    Dodis, Y., Kiayias, A., Nicolosi, A., Shoup, V.: Anonymous identification in ad hoc groups. In: Cachin, C., Camenisch, J.L. (eds.) EUROCRYPT 2004. LNCS, vol. 3027, pp. 609–626. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  11. 11.
    Kim, S., Park, S., Won, D.: Convertible group signatures. In: Kim, K.-c., Matsumoto, T. (eds.) ASIACRYPT 1996. LNCS, vol. 1163, pp. 311–321. Springer, Heidelberg (1996)CrossRefGoogle Scholar
  12. 12.
    Kim, S., Park, S., Won, D.: Group signatures for hierarchical multigroups. In: Okamoto, E. (ed.) ISW 1997. LNCS, vol. 1396, pp. 273–281. Springer, Heidelberg (1998)CrossRefGoogle Scholar
  13. 13.
    Petersen, H.: How to convert any digital signature scheme into a group signature. In: Christianson, B., Lomas, M. (eds.) Security Protocols 1997. LNCS, vol. 1361, pp. 67–78. Springer, Heidelberg (1998)CrossRefGoogle Scholar
  14. 14.
    Rivest, R.L., Shamir, A., Tauman, Y.: How to Leak a Secret. In: Boyd, C. (ed.) ASIACRYPT 2001. LNCS, vol. 2248, pp. 552–565. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  15. 15.
    Yung, M. (ed.): CRYPTO 2002. LNCS, vol. 2442. Springer, Heidelberg (2002)zbMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2005

Authors and Affiliations

  • Toshiyuki Isshiki
    • 1
  • Keisuke Tanaka
    • 2
  1. 1.NEC CorporationKawasaki, KanagawaJapan
  2. 2.Dept. of Mathematical and Computing SciencesTokyo Institute of TechnologyTokyoJapan

Personalised recommendations