AI/NLP Technologies Applied to Spacecraft Mission Design

  • Maria Teresa Pazienza
  • Marco Pennacchiotti
  • Michele Vindigni
  • Fabio Massimo Zanzotto
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3533)


In this paper we propose the model of a prototypical NLP architecture of an information access system to support a team of experts in a scientific design task, in a shared and heterogeneous framework. Specifically, we believe AI/NLP can be helpful in several tasks, such as the extraction of implicit information needs enclosed in meeting minutes or other documents, analysis of explicit information needs expressed through Natural Language, processing and indexing of document collections, extraction of required information from documents, modeling of a common knowledge base, and, finally, identification of important concepts through the automatic extraction of terms. In particular, we envisioned this architecture in the specific and practical scenario of the Concurrent Design Facility (CDF) of the European Space Agency (ESA), in the framework of the SHUMI project (Support To HUman Machine Interaction) developed in collaboration with the ESA/ESTEC – ACT (Advanced Concept Team).


Semantic Relation European Space Agency Domain Concept Relational Pattern Candidate Term 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Agirre, E., Ansa, O., Hovy, E., Martinez, D.: Enriching very large ontologies using the WWW. In: Proceedings of the Workshop on Ontology Construction of ECAI-00 (2000)Google Scholar
  2. 2.
    Basili, R., Pazienza, M.T., Zanzotto, F.M.: Customizable modular lexicalized parsing. In: Proc. of the 6th International Workshop on Parsing Technology (2000)Google Scholar
  3. 3.
    Basili, R., Pazienza, M.T., Zanzotto, F.M.: Learning IE patterns: a terminology extraction perspective. In: Workshop of Event Modelling for Multilingual Document Linking at LREC 2002, Canary Islands, Spain (2002)Google Scholar
  4. 4.
    Basili, R., Pazienza, M.T., Zanzotto, F.M.: Exploiting the feature vector model for learning linguistic representations of relational concepts. In: Workshop on Adaptive Text Extraction and Mining (ATEM 2003). Cavtat, Croatia (2003)Google Scholar
  5. 5.
    Basili, R., Vindigni, M., Zanzotto, F.M.: Integrating ontological and linguistic knowledge for Conceptual Information Extraction Web Intelligence (WI 2003), Halifax, Canada (2003)Google Scholar
  6. 6.
    Basili, R., Cammisa, M., Zanzotto, F.M.: A semantic similarity measure for unsupervised semantic disambiguation. In: Proceedings of the Language, Resources and Evaluation LREC 2004 Conference, Lisbon, Portugal (2004)Google Scholar
  7. 7.
    Bourigault, D.: Surface grammatical analysis for the extraction of terminological noun phrases. In: Proceedings of the Fifteenth International Conference on Computational Linguistics, pp. 977–981 (1992)Google Scholar
  8. 8.
    Daille, B.: Approach mixte pour l’extraction de termilogie: statistique lexicale et filters linguistiques. PhD Thesis, C2V, TALANA, Universitè Paris VII (1994)Google Scholar
  9. 9.
    Hahn, U., Schnattinger, K.: Towards text knowledge engineering. In: Proceedings of AAAI ’98 / IAAI ’98, Madison, Wisco (1998)Google Scholar
  10. 10.
    Miller, G.A.: WordNet: A lexical Database for English. Communication of the ACM 38(11), 39–41 (1995)CrossRefGoogle Scholar
  11. 11.
    Moschitti, A., Zanzotto, F.M.: A robust summarization system to explain document categorization. In: Proceedings of ROMAND 2002, Frascati, Italy (July 2002)Google Scholar
  12. 12.
    Pazienza, M.T.: A domain specific terminology extraction system. International Journal of Terminology 5.2, 183–201 (1999)Google Scholar
  13. 13.
    Pazienza, M.T., Pennacchiotti, M., Vindigni, M., Zanzotto, F.M.: Shumi, Support To Human Machine Interaction. Technical Report. ESA-ESTEC cont.18149/04/NL/MV (2004)Google Scholar
  14. 14.
    Pazienza, M.T., Pennacchiotti, M., Zanzotto, F.M.: Terminology extraction: an analysis of linguistic and statistical approaches. In: Knowledge Mining, Springer, Heidelberg (2005)Google Scholar
  15. 15.
    Resnik, P.: Using Information Content to Evaluate Semantic Similarity in a Taxonomy. In: Proceedings of the 14th International Joint Conference on Artificial Intelligence (1995)Google Scholar
  16. 16.
    Salton, G., Yang, C.S., Yu, C.T.: A Theory of term importance in automatic text analysis. Journal of the American Society for Information Science 26(1), 33–44 (1972)CrossRefGoogle Scholar
  17. 17.
    Wu, W., Xiong, H., Shekhar, S.: Clustering and Information Retrieval. Kluwer Academic Publishers, Boston (2003)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2005

Authors and Affiliations

  • Maria Teresa Pazienza
    • 1
  • Marco Pennacchiotti
    • 1
  • Michele Vindigni
    • 1
  • Fabio Massimo Zanzotto
    • 2
  1. 1.Artificial Intelligence Research GroupUniversity of Roma Tor VergataItaly
  2. 2.University of Milano BicoccaItaly

Personalised recommendations