Skip to main content

A Semi-autonomous Wheelchair with HelpStar

  • Conference paper
Innovations in Applied Artificial Intelligence (IEA/AIE 2005)

Abstract

This paper describes a semi-autonomous wheelchair enabled with “HelpStar” that provides a user who is visually impaired with mobility independence. Our “HelpStar” enabled semi-autonomous wheelchair functions more like a personal assistant, allowing much greater user independence. When the user finds themself in an unforeseen circumstance, the “HelpStar” feature can be activated to allow a remote operator to use Virtual Reality technologies to provide helpful navigational instructions or to send commands directly to the wheelchair. This paper demonstrates the successful integration of assistive technologies that allow a person who is visually impaired and using a wheelchair to navigate through everyday environments.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Adelola, I.A., Cox, S.L., Rahman, A.: Adaptive Virtual Interface for Powered Wheelchair Training for Disabled Children. In: Proc. of 4th Intl. Conference of Disability, Virtual Reality & Assoc. Technology, Veszprém, Hungary, pp. 173–180 (2002)

    Google Scholar 

  2. Arkin, R.C.: Behavior-based robotics. MIT Press, Cambridge (1998)

    Google Scholar 

  3. Brooks, R.A.: How to Build Complete Creatures Rather than Isolated Cognitive Simulators. In: VanLehn, K. (ed.) Architectures for Intelligence, pp. 225–239. Lawrence Erlbaum Associates, Hillsdale (1991a)

    Google Scholar 

  4. Brooks, R.A.: Integrated Systems Based on Behaviors. SIGART Bulletin 2 2(4), 46–50 (1991b)

    Article  Google Scholar 

  5. Evolution Robotics, Evolution Robotics ER1 Robot Kit (2004), from http://www.evolution.com/education/er1/ (retrieved October 12, 2004)

  6. Gomi, T., Griffith, A.: Developing intelligent wheelchairs for the handicapped. In: Mittal, V.O., Yanco, H.A., Aronis, J., Simpson, R.C. (eds.) Assistive Technology and Artificial Intelligence. LNCS (LNAI), vol. 1458, pp. 150–178. Springer, Heidelberg (1998)

    Chapter  Google Scholar 

  7. Gundersen, R.T., Smith, S.J., Abbott, B.A.: Applications of Virtual Reality Technology to Wheelchair Remote Steering System. In: Proc. of 1st Euro Conf of Disability, Virtual Reality & Assoc. Technology, Maidenhead, UK, pp. 47–56 (1996)

    Google Scholar 

  8. Inman, D.P., Loge, K.: Teaching Motorized Wheelchair Operation in Virtual Reality. In: Proceedings of the 1995 CSUN Virtual Reality Conference, California State University, Northridge (1995), from http://www.csun.edu/cod/conf/1995/proceedings/1001.htm (retrieved October 1, 2004)

  9. Lankenau, A., Röfer, T., Krieg-Brückner, B.: Self-localization in large-scale environments for the bremen autonomous wheelchair. In: Freksa, et al. (eds.) Spatial Cognition III. LNCS (LNAI), vol. 2685, pp. 34–61. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

  10. Levine, S.P., et al.: The NavChair Assistive Wheelchair Navigation System. IEEE Transactions on Rehabilitation Engineering 7(4), 443–451 (1999)

    Article  Google Scholar 

  11. Matarić, M.J.: Behavioral Synergy without Explicit Integration. SIGART Bulletin 2 2(4), 130–133 (1991)

    Article  Google Scholar 

  12. Matarić, M.J.: Behavior-Based Control: Main Properties and Implications. In: Proc. of IEEE Int.l Conf. on Robotics and Automation, Workshop on Architectures for Intelligent Control Systems, Nice, France, May, pp. 46–54 (1992)

    Google Scholar 

  13. Miller, D.: Assistive robotics: an overview. In: Mittal, et al. (eds.) Assistive Technology and Artificial Intelligence. LNCS (LNAI), vol. 1458, pp. 126–136. Springer, Heidelberg (1998)

    Chapter  Google Scholar 

  14. Polhemus Inc., LIBERTYTM (2004), http://www.polhemus.com/LIBERTYTM.htm (retrieved October 12, 2004)

  15. Rao, R.S., et al.: Human Robot Interaction: Application to Smart Wheelchairs. In: Proc. of IEEE International Conference on Robotics & Automation, Washington, DC, May 2002, pp. 3583–3588 (2002)

    Google Scholar 

  16. Uchiyama, H.: Behavior-Based Perceptual Navigational Systems for Powered Wheelchair Operations, Master Thesis Proposal at the University of Georgia (2003), from http://www.cs.uga.edu/potter/robotics/HajimeThesisProposal.pdf (retrieved October 11, 2004)

  17. Yanco, H.A.: Integrating robotic research: a survey of robotic wheelchair development. In: AAAI Spring Symposium on Integrating Robotic Research, Stanford, California (1998)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Uchiyama, H. et al. (2005). A Semi-autonomous Wheelchair with HelpStar. In: Ali, M., Esposito, F. (eds) Innovations in Applied Artificial Intelligence. IEA/AIE 2005. Lecture Notes in Computer Science(), vol 3533. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11504894_111

Download citation

  • DOI: https://doi.org/10.1007/11504894_111

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-26551-1

  • Online ISBN: 978-3-540-31893-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics