Advertisement

Molecular Beam Epitaxy of Rare-Earth Oxides

  • H. Jörg Osten
  • Eberhard Bugiel
  • Malte Czernohorsky
  • Zeyard Elassar
  • Olaf Kirfel
  • Andreas Fissel
Chapter
Part of the Topics in Applied Physics book series (TAP, volume 106)

Abstract

We present results for crystalline lanthanide oxides on silicon with the Ln2O3 composition (Ln = Pr, Nd and Gd) in the cubic bixbyite structure grown by solid state molecular beam epitaxy (MBE). On Si(001)-oriented surfaces, crystalline Ln2O3 grows as (110)-oriented domains, with two orthogonal in-plane orientations. We obtain perfect epitaxial growth of cubic Nd2O3 on Si(111) substrates. These layers can be overgrown epitaxially with silicon. The successfully demonstrated heteroepitaxy of such Si/Ln2O3/Si(111) stacks opens the door to a wide range of novel tunneling devices. For all investigated lanthanide oxides grown under ultra-high vacuum conditions, we observed the formation of crystalline interfacial silicide inclusions. MBE in combination with real-time reflection high-energy electron diffraction and in vacuo X-ray photoelectron spectroscopy were used to gain a detailed understanding of the interface and film formation during epitaxial growth of Nd2O3 on silicon. Based on that understanding, the whole growth procedure had to be adapted accordingly. In particular, the partial oxygen pressure during the interface formation and during growth is a very critical parameter. Layers grown by an appropriately by modified MBE process display no silicide inclusions, and also no interfacial silicon oxide layers.

Keywords

71.55.-i; 72.80.Sk; 73.20.At; 75.47.Lx; 77.55.+f 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. M. L. Green, E. P. Gusev, R. Degraeve, E. L. Garfunkel: Ultrathin (4) SiO2 and Si–O–N gate dielectric layers for silicon microelectronics: understanding the processing, structure, and physical and electrical limits, J. Appl. Phys. 90, 2057 (2001) CrossRefGoogle Scholar
  2. G. D. Wilk, R. M. Wallace, J. M. Anthony: High-k gate dielectrics: current status and material properties consideration, J. Appl. Phys. 89, 5243 (2001) CrossRefGoogle Scholar
  3. K. J. Hubbard, D. G. Schlom: Thermodynamic stability of binary oxides in contact with silicon, J. Mater. Res. 11, 2757 (1996) Google Scholar
  4. D. P. Norton: Synthesis and properties of epitaxial electronic oxide thin-film materials, Mat. Sci. Eng. R 43, 139 (2004) Google Scholar
  5. G. V. Samsonov (Ed.): The Oxide Handbook, 2 ed. (IFI/Plenum, New York 1982) Google Scholar
  6. G. Y. Adachi, N. Imanaka: The binary rare earth oxides, Chem. Rev. 98, 1479 (1998) CrossRefGoogle Scholar
  7. N. V. Skorodumova, S. I. Simak, B. I. Lundqvist, I. A. Abrikosov, B. Johansson: Quantum origin of the oxygen storage capability of ceria, Phys. Rev. Lett. 89, 166601 (2002) CrossRefGoogle Scholar
  8. H. J. Osten, J. P. Liu, E. Bugiel, H. J. Muessig, P. Zaumseil: Growth of crystalline praseodymium oxide on silicon, J. Cryst. Growth 235, 229 (2002) CrossRefGoogle Scholar
  9. A. Fissel, H. J. Osten, E. Bugiel: Towards understanding epitaxial growth of alternative high-k dielectrics on Si(001): application to praseodymium oxide, J. Vac. Sci. Technol. B 21, 1765 (2003) Google Scholar
  10. E. Bugiel, J. P. Liu, H. J. Osten: TEM investigation of epitaxial praseodymium oxide on silicon, Inst. Phys. Conf. Ser. 169, 411 (2001) Google Scholar
  11. H. J. Osten, J. P. Liu, E. Bugiel, H. J. Muessig, P. Zaumseil: Epitaxial growth of praseodymium oxide on silicon, Mat. Sci. Eng. B 87, 297 (2001) Google Scholar
  12. J. Kwo, M. Hong, A. R. Kortan, K. L. Queeny, Y. J. Chabal, R. L. Opila, D. A. Mueller, S. N. G. Chu: Properties of high-k gate dielectrics Gd2 3 and 2 3 for Si, J. Appl. Phys. 89, 3920 (2001) CrossRefGoogle Scholar
  13. J. P. Liu, P. Zaumseil, E. Bugiel, H. J. Osten: Epitaxial growth of Pr2 3 on Si(111) and the observation of a hexagonal to cubic phase transition during postgrowth 2 annealing, Appl. Phys. Lett. 79, 671 (2001) CrossRefGoogle Scholar
  14. N. Miyata, T. Nabatame, T. Horikawa, M. Ichikawa, A. Toriumi: Void nucleation in thin HfO2 layer on Si, Appl. Phys. Lett. 82, 3880 (2003) CrossRefGoogle Scholar
  15. P. F. Lee, J. Y. Dai, H. L. Chan, C. L. Choy: Study of Hf–Al–O high-k gate dielectric thin films grown on Si, Integrated Ferroelectrics 59, 1213 (2003) Google Scholar
  16. P. F. Lee, J. Y. Dai, H. L. Chan, C. L. Choy: Study of interfacial reaction and its impact on electric properties of Hf–Al–O high-k gate dielectric thin films grown on Si, Appl. Phys. Lett. 82, 2419 (2003) CrossRefGoogle Scholar
  17. N. Miyata, M. Ichikawa, T. Nabatame, T. Horikawa, A. Toriumi: Thermal stability of a thin HfO2/ultrathin SiO2/Si structure: interfacial Si oxidation and silicidation, Jpn. J. Appl. Phys. 42, L138 (2003) CrossRefGoogle Scholar
  18. A. Fissel, J. Dabrowski, H. J. Osten: Photoemission and initio theoretical study of interface and film formation during epitaxial growth and annealing of praseodymium oxide on Si(001), J. Appl. Phys. 91, 8986 (2002) CrossRefGoogle Scholar
  19. J. J. Chambers, G. N. Parsons: Physical and electrical characterization of ultrathin yttrium silicate insulators on silicon, J. Appl. Phys. 90, 918 (2001) see also 16b CrossRefGoogle Scholar
  20. Landolt-Börnstein: Group III Condensed Matter, 7 D1A (Springer, Berlin, Heidelberg 1985) Google Scholar
  21. D. Schmeisser, J. Dabrowski, H.-J. Muessig: Pr2 3/Si(001) interface reactions and stability, Mater. Sci. Eng. B 109, 30 (2004) Google Scholar
  22. H. J. Osten, M. Czernohorsky, O. Kirfel, A. Fissel: unpublished Google Scholar

Authors and Affiliations

  • H. Jörg Osten
    • 1
  • Eberhard Bugiel
    • 1
  • Malte Czernohorsky
    • 1
  • Zeyard Elassar
    • 2
  • Olaf Kirfel
    • 2
  • Andreas Fissel
    • 2
  1. 1.Institute for Electronic Materials and DevicesUniversity of HannoverHannoverGermany
  2. 2.Information Technology LaboratoryHannoverGermany

Personalised recommendations