Skip to main content

Experimental Determination of the Band Offset of Rare Earth Oxides on Various Semiconductors

  • Chapter
  • First Online:
Rare Earth Oxide Thin Films

Part of the book series: Topics in Applied Physics ((TAP,volume 106))

Abstract

The critical role of gate oxide in ultra-scaled devices is being investigated in terms of the properties of rare earth oxides as high dielectric constant (high-κ) materials to replace SiO2. In particular, the combination of rare earth oxides with high-mobility substrates, like Ge and GaAs, could offer the possibility to improve the interface properties. Among the different properties under investigation, the band alignment at the interface is a key issue because it affects the tunneling behavior of a device. Internal photoemission and X-ray photoelectron spectroscopy are useful techniques to experimentally determine the band offset at the semiconductor/oxide interface. After a detailed description of these two methods, we present a review of the data available in the literature on the interface of different high-κ oxides on silicon. Finally, we report our measurements of the Lu2O3 band alignment on various semiconductor substrates. A conduction band offset value of 2.1 eV has been obtained by internal photoemission for Lu2O3 films grown on Si, Ge, and GaAs. X-ray photoelectron spectroscopy measurements of the valence band offset were performed on Ge/Lu2O3 heterojunction. The results are in excellent agreement with those obtained using internal photoemission.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • G. D. Wilk, R. M. Wallace, J. M. Anthony: High-κ gate dielectrics: Current status and materials properties considerations, J. Appl. Phys. 89, 5243–5275 (2001)

    Article  CAS  Google Scholar 

  • C. L. Hinkle, G. Lucovsky: A novel approach for determining the effective tunneling mass of electrons in 2 and other high-κ alternative gate dielectrics for advanced CMOS devices, Microelectron. Eng. 72, 257–262 (2004)

    Article  CAS  Google Scholar 

  • J. Robertson: High dielectric constant oxides, Eur. Phys. J. Appl. Phys. 28, 265–291 (2004)

    Article  CAS  Google Scholar 

  • M. V. Fischetti, D. A. Neumayer, E. A. Cartier: Effective electron mobility in Si inversion layers in metal/oxide/semiconductor systems with a high-κinsulator: The role of remote phonon scattering, J. Appl. Phys. 90, 4587 (2001)

    Article  CAS  Google Scholar 

  • V. V. Afanas'ev, M. Houssa, A. Stesmans, M. M. Heyns: Electron energy barriers between (100)Si and ultrathin stacks of 2, 2O3, and 2 insulators, Appl. Phys. Lett. 78, 3073–3075 (2001)

    Article  Google Scholar 

  • S. A. Chambers, T. Droubay, T. C. Kaspar, M. Gutowski: Experimental determination of valence band maxima for SrTiO3, TiO2 and SrO and the associated valence band offsets with Si(001), J. Vac. Sci. Technol. B 22, 2205–2215 (2004)

    Article  CAS  Google Scholar 

  • R. Ludeke, M. T. Cuberes, E. Cartier: Local transport and trapping issues in 2O3 gate oxide structures, Appl. Phys. Lett. 76, 2886–2888 (2000)

    Article  CAS  Google Scholar 

  • R. Williams: Photoemission of electrons from silicon into silicon dioxide, Phys. Rev. 140, A 569–A 575 (1965)

    Article  Google Scholar 

  • A. Goodman: Photoemission of electrons from silicon and gold into silicon dioxide, Phys. Rev. 144, 588–593 (1966)

    Article  CAS  Google Scholar 

  • A. M. Goodman: Photoemission of holes from silicon into silicon dioxide, Phys. Rev. 152, 780–784 (1966)

    Article  CAS  Google Scholar 

  • A. M. Goodman: Photoemission of electrons from n-type degenerate silicon into silicon dioxide, Phys. Rev. 152, 785–787 (1966)

    Article  CAS  Google Scholar 

  • R. J. Powell: Interface barrier energy determination from voltage dependence of photoinjected currents, J. Appl. Phys. 41, 2424–2432 (1970)

    Article  CAS  Google Scholar 

  • R. J. Powell, C. N. Berglund: Photoinjection studies of charge distributions in oxides of MOS structures, J. Appl. Phys. 42, 4390–4397 (1971)

    Article  CAS  Google Scholar 

  • C. N. Berglund, R. J. Powell: Photoinjection into 2: electron scattering in the image force potential well, J. Appl. Phys. 42, 573–579 (1971)

    Article  CAS  Google Scholar 

  • V. K. Adamchuk, V. V. Afanas'ev: Internal photoemission spectroscopy of semiconductor-insulator interfaces, Prog. Surf. Sci. 41, 111–211 (1992)

    Article  CAS  Google Scholar 

  • G. Seguini, E. Bonera, S. Spiga, G. Scarel, M. Fanciulli: Energy-band diagram of metal/2O3/silicon structures, Appl. Phys. Lett. 85, 5316–5318 (2004)

    Article  CAS  Google Scholar 

  • P. V. Dressendorfer, R. C. Barker: Photoemission measurements of interface barrier energies for tunnel oxides on silicon, Appl. Phys. Lett. 36, 933–935 (1980)

    Article  CAS  Google Scholar 

  • V. V. Afanas'ev, M. Houssa, A. Stesmans, M. M. Heyns: Band alignments in metal–oxide–silicon structures with atomic-layer deposited 2O3, J. Appl. Phys. 91, 3079–3084 (2002)

    Article  Google Scholar 

  • E. A. Kraut, R. W. Grant, J. R. Waldrop, S. P. Kowalczyk: Precise determination of the valence-band edge in X-ray photoemission spectra: Application to measurements of semiconductor interface potentials, Phys. Rev. Lett. 44, 1620–1623 (1980)

    Article  CAS  Google Scholar 

  • E. A. Kraut, R. W. Grant, J. R. Waldrop, S. P. Kowalczyk: Semiconductor core level to valence-band maximum binding-energy differences: Precise determination by X-ray photoelectron spectroscopy, Phys. Rev. B 28, 1965–1977 (1983)

    Article  CAS  Google Scholar 

  • S. Miyazaki, H. Nishimura, M. Fukuda, L. Ley, J. Ristein: Structure and electronic states of ultrathin SiO2 thermally grown on Si(100) and Si(111) surfaces, Appl. Surf. Sci. 114/114, 585–589 (1997)

    Article  Google Scholar 

  • J. R. Chelikowsky, M. L. Cohen: Nonlocal pseudopotential calculations for the electronic structure of eleven diamond and zinc-blende semiconductors, Phys. Rev. B 14, 556 (1976)

    Article  CAS  Google Scholar 

  • S. Miyazaki, M. Narasaki, M. Ogasawara, M. Hirose: Characterization of ultrathin zirconium oxide films on silicon using photoelectron spectroscopy, Microelectron. Eng. 59, 373–378 (2001)

    Article  CAS  Google Scholar 

  • S. Miyazaki: Photoemission study of energy-band alignments and gap-state density distributions for high-κ gate dielectrics, J. Vac. Sci. Technol. B 19, 2212–2216 (2001)

    Article  CAS  Google Scholar 

  • F. G. Bell, L. Ley: Photoemission study of SiOx (0x 2) alloys, Phys. Rev. B 37, 8383–8393 (1988)

    Article  CAS  Google Scholar 

  • D. Briggs, M. P. Seah: Pratical Surface Analysis, vol. 1 (Wiley, New York 1990)

    Google Scholar 

  • A. Ohta, M. Yamaoka, S. Miyazaki: Photoelectron spectroscopy of ultrathin yttrium oxide films on Si(100), Microelectron. Eng. 72, 154–159 (2004)

    Article  CAS  Google Scholar 

  • T. Hattori, T. Yoshida, T. Shiraishi, K. Takahashi, H. Nohira, S. Joumori, K. Nakajima, M. Suzuki, K. Kimura, I. Kashiwagi, C. Ohshima, S. Ohmi, H. Iwai: Composition, chemical structure, and electronic band structure of rare earth oxide/Si(100) intefacial transition layer, Microelectron. Eng. 72, 283–287 (2004)

    Article  CAS  Google Scholar 

  • V. V. Afanas'ev, A. Stesmans, F. Chen, S. A. Campbell: Electrical conduction and band offsets in Si/(1-x)O2/metal structures, J. Appl. Phys. 95, 7936–7939 (2004)

    Article  Google Scholar 

  • R. Puthenkovilakam, J. P. Chang: Valence band structure and band alignment at the 2/Si interface, Appl. Phys. Lett. 84, 1353–1355 (2004)

    Article  CAS  Google Scholar 

  • S. J. Wang, A. C. H. Huan, Y. L. Foo, J. W. Chai, J. S. Pan, Q. Li, Y. F. Dong, Y. P. Feng, C. K. Ong: Energy-band alignments at 2/Si, SiGe, and Ge intefaces, Appl. Phys. Lett. 85, 4418–4420 (2004)

    Article  CAS  Google Scholar 

  • V. V. Afanas'ev, A. Stesmans, F. Chen, X. Shi, S. A. Campbell: Internal photoemission of electrons and holes from (100)Si into 2, Appl. Phys. Lett. 81, 1053–1055 (2002)

    Article  Google Scholar 

  • R. Puthenkovilakam, J. P. Chang: An accurate determination of barrier heights at the 2/Si interfaces, J. Appl. Phys. 96, 2701–2707 (2004)

    Article  CAS  Google Scholar 

  • S. Sayan, T. Emge, E. Garfunkel, X. Zhao, L. Wielunski, A. Bartynski, D. Vanderbilt, J. S. Suehle, S. Suzer, M. Banaszak-Holl: Band alignment issues related to 2/2/p-Si gate stacks, J. Appl. Phys. 96, 7485–7491 (2004)

    Article  CAS  Google Scholar 

  • Q. Li, S. J. Wang, K. B. Li, A. C. H. Huan, J. W. Chai, J. S. Pan, C. K. Ong: Photoemission study of energy-band alignment for 2/Si system, Appl. Phys. Lett. 85, 6155–6157 (2004)

    Article  CAS  Google Scholar 

  • V. V. Afanas'ev, A. Stesmans, C. Zhao, M. Caymax, Z. M. Rittersma, J. W. Maes: Band alignment at the interface of (100)Si with (1-x)O high-κ dilectric layers, Appl. Phys. Lett. 86, 072108–1–072108–3 (2005)

    Google Scholar 

  • H. J. Osten, J. P. Liu, H. J. Müssig: Band gap and band discontinuities at crystalline 2O3/Si(001) heterojunctions, Appl. Phys. Lett. 80, 297–299 (2002)

    Article  CAS  Google Scholar 

  • V. A. Rozhkov, A. Y. Trusova, I. G. Berezhnoi: Energy barriers and trapping centers in silicon metal-insulators-semiconductor structures with samarium and ytterbium oxide insulators, Tech. Phys. Lett. 24, 217–219 (1998)

    Article  CAS  Google Scholar 

  • V. V. Afanas'ev, A. Stesmans, M. Passlack, N. Medendorp: Band offsets at the interfaces of GaAs(100) with 0.4-xO0.6 insulators, Appl. Phys. Lett. 85, 597–599 (2004)

    Article  Google Scholar 

  • V. V. Afanas'ev, A. Stesmans, C. Zhao, M. Caymax, T. Heeg, J. Schubert, Y. Jia, G. Schlom, G. Lucovsky: Band alignment between (100)Si and complex rare earth/transition metal oxides, Appl. Phys. Lett. 85, 5917–5919 (2004)

    Article  Google Scholar 

  • L. F. Edge, D. G. Schlom, S. A. Chambers, E. Cicerrella, J. L. Freeout, B. Holländer, J. Schubert: Measurement of the band offsets between amorphous 3 and silicon, Appl. Phys. Lett. 84, 726–728 (2004)

    Article  CAS  Google Scholar 

  • G. Seguini, S. Spiga, E. Bonera, M. Fanciulli, A. Reyes Huamantinco, C. J. Först, C. R. Ashman, P. E. Blöchl, A. Dimoulas, G. Mavrou: Band alignment at the 2Hf2O7/Si(001) interface, Unpublished (2005)

    Google Scholar 

  • G. Scarel, E. Bonera, C. Wiemer, G. Tallarida, S. Spiga, M. Fanciulli: Atomic-layer deposition of Lu2O3, Appl. Phys. Lett. 85, 630–632 (2004)

    Article  CAS  Google Scholar 

  • M. Perego, G. Seguini, G. Scarel, M. Fanciulli: X-ray photoelectron spectroscopy study of energy band alignment of rare earth oxides, Unpublished (2005)

    Google Scholar 

  • S. Spiga, C. Wiemer, G. Tallarida, G. Scarel, S. Ferrari, G. Seguini, M. Fanciulli: Effects of the oxygen precursor on the electrical and structural properties of 2 films grown by atomic layer deposition on Ge, Appl. Phys. Lett. 87, 112904–1–3 (2005)

    Article  Google Scholar 

  • V. V. Afanas'ev, A. Stesmans: Energy band alignment at the (100)Ge/2 interface, Appl. Phys. Lett. 84, 2319–2321 (2004)

    Article  Google Scholar 

  • G. Seguini: Band alignment of 2O3 on Ge, Private Communication (2005)

    Google Scholar 

  • G. Seguini: Band alignment of 2O3 on GaAs, Private Communication (2005)

    Google Scholar 

  • V. V. Afanas'ev, A. Stesmans: Trapping of ^+ and ^+ ions at the Si/2 inteface, Phys. Rev. B 60, 5506–5512 (2000)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Marco Fanciulli Giovanna Scarel

Rights and permissions

Reprints and permissions

About this chapter

Cite this chapter

Seguini, G., Perego, M., Fanciulli, M. Experimental Determination of the Band Offset of Rare Earth Oxides on Various Semiconductors. In: Fanciulli, M., Scarel, G. (eds) Rare Earth Oxide Thin Films. Topics in Applied Physics, vol 106. Springer, Berlin, Heidelberg . https://doi.org/10.1007/11499893_16

Download citation

  • DOI: https://doi.org/10.1007/11499893_16

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-35796-4

  • Online ISBN: 978-3-540-35797-1

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics