Skip to main content

Nonlinear Robust Identification Using Multiobjective Evolutionary Algorithms

  • Conference paper

Part of the Lecture Notes in Computer Science book series (LNTCS,volume 3562)


In this article, a procedure to estimate a nonlinear models set (Θ p ) in a robust identification context, is presented. The estimated models are Pareto optimal when several identification error norms are considered simultaneously. A new multiobjective evolutionary algorithm \(\epsilon\nearrow - MOEA\) has been designed to converge towards Θ\(_{P}^{\rm \star}\), a reduced but well distributed representation of Θ P since the algorithm achieves good convergence and distribution of the Pareto front J(Θ). Finally, an experimental application of the \(\epsilon\nearrow - MOEA\) algorithm to the nonlinear robust identification of a scale furnace is presented. The model has three unknown parameters and ℓ ∞  and ℓ1 norms are been taken into account.


  • Cost Function
  • Pareto Front
  • Optimal Pareto Front
  • Multiobjective Optimization Problem
  • Multiobjective Evolutionary Algorithm

These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

This is a preview of subscription content, access via your institution.

Buying options

USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/11499305_24
  • Chapter length: 11 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
USD   119.00
Price excludes VAT (USA)
  • ISBN: 978-3-540-31673-2
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   159.00
Price excludes VAT (USA)


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Deb, K., Mohan, M., Mishra, S.: A fast multi-objective evolutionary algorithm for finding well-spread pareto-optimal solutions. Technical Report 2003002 KanGAL (2003)

    Google Scholar 

  2. Garulli, A., Kacewicz, B., Vicino, A., Zappa, G.: Error Bounds for Conditional Algorithms in Restricted Complexity Set Membership Identification. IEEE Transaction on Automatic Control 45(1), 160–164 (2000)

    MATH  CrossRef  MathSciNet  Google Scholar 

  3. Goldberg, D.E.: Genetic Algorithms in search, optimization and machine learning. Addison-Wesley, Reading (1989)

    MATH  Google Scholar 

  4. Herrero, J.M., Blasco, X., Salcedo, J.V., Ramos, C.: Membership-Set Estimation with Genetic Algorithms in Nonlinear Models. In: Proc. of the XV international Conference on Systems Science (2004)

    Google Scholar 

  5. Blasco, X., Herrero, J.M., Martínez, M., Senent, J.: Nonlinear parametric model identification with Genetic Algorithms. Application to thermal process. In: Mira, J., Prieto, A.G. (eds.) IWANN 2001. LNCS, vol. 2084, p. 466. Springer, Heidelberg (2001)

    CrossRef  Google Scholar 

  6. Johansson, R.: System modeling identification. Prentice-Hall, Englewood Cliffs (1993)

    Google Scholar 

  7. Laumanns, M., Thiele, L., Deb, K., Zitzler, E.: Combining convergence and diversity in evolutionary multi-objective optimization. Evolutionary computation 10(3) (2002)

    Google Scholar 

  8. Ram, B., Gupta, H., Bandyopadhyay, P., Deb, K., Adimurthy, V.: Robust Identification of Aerospace Propulsion Parameters using Optimization Techniques based on Evolutionary Algorithms. Technical Report 2003005 KanGAL (2003)

    Google Scholar 

  9. Reinelt, W., Garulli, A., Ljung, L.: Comparing different approaches to model error modelling in robust identification. Automatica 38(5), 787–803 (2002)

    MATH  CrossRef  MathSciNet  Google Scholar 

  10. Pronzalo, L., Walter, E.: Identification of parametric models from experimental data. Springer, Heidelberg (1997)

    Google Scholar 

Download references

Author information

Authors and Affiliations


Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2005 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Herrero, J.M., Blasco, X., Martínez, M., Ramos, C. (2005). Nonlinear Robust Identification Using Multiobjective Evolutionary Algorithms. In: Mira, J., Álvarez, J.R. (eds) Artificial Intelligence and Knowledge Engineering Applications: A Bioinspired Approach. IWINAC 2005. Lecture Notes in Computer Science, vol 3562. Springer, Berlin, Heidelberg.

Download citation

  • DOI:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-26319-7

  • Online ISBN: 978-3-540-31673-2

  • eBook Packages: Computer ScienceComputer Science (R0)