Skip to main content

Twists – An Operational Representation of Shape

  • Conference paper
Computer Algebra and Geometric Algebra with Applications (IWMM 2004, GIAE 2004)

Abstract

We give a contribution to the representation problem of free-form curves and surfaces. Our proposal is an operational or kinematic approach based on the Lie group SE(3). While in Euclidean space the modelling of shape as an orbit of a point under the action of SE(3) is limited, we are embedding our problem into the conformal geometric algebra ℝ4,1 of the Euclidean space ℝ3. This embedding results in a number of advantages which makes the proposed method a universal and flexible one with respect to applications. It makes possible the robust and fast estimation of the pose of 3D objects from incomplete and noisy image data. Especially advantagous is the equivalence of the proposed shape model to that of the Fourier representations.

This work has been partially supported (G.S. and C.P.) by EC Grant IST-2001-3422 (VISATEC), by DFG Grant RO 2497/1-1 (B.R.), and by DFG Graduiertenkolleg No. 357 (B.R. and C.P.).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Arbter, K.: Affine-invariant fourier descriptors. In: Simon, J.C. (ed.) From Pixels to Features, pp. 153–164. Elsevier Science Publishers, Amsterdam (1989)

    Google Scholar 

  2. Bracewell, R.N.: The Fourier Transform and its Applications. McGraw Hill Book Company, New York (1984)

    Google Scholar 

  3. Dorst, L., Fontijne, D.: An algebraic foundation for object-oriented euclidean geometry. In: Hitzer, E.M.S., Nagaoka, R. (eds.) Proc. Innovative Teaching in Mathematics with Geometric Algebra, Kyoto, Research Institute for Mathematics, Kyoto University, May 2004, pp. 138–153 (2004)

    Google Scholar 

  4. Farouki, R.T.: Curves from motion, motion from curves. In: Laurent, P.-J., Sablonniere, P., Schumaker, L.L. (eds.) Curve and Surface Design. Vanderbilt University Press, Nashville (2000)

    Google Scholar 

  5. Faugeras, O.: Stratification of three-dimensional vision: projective, affine and metric representations. Journ. of the Optical Soc. of America 12, 465–484 (1995)

    Article  Google Scholar 

  6. Felsberg, M., Sommer, G.: The monogenic signal. IEEE Trans. Signal Processing 49(12), 3136–3144 (2001)

    Article  MathSciNet  Google Scholar 

  7. Felsberg, M., Sommer, G.: The monogenic scale-space: A unified approach to phase-based image processing in scale-space. Journal of Mathematical Imaging and Vision 21, 5–26 (2004)

    Article  MathSciNet  Google Scholar 

  8. Granlund, G., Knutsson, H.: Signal Processing for Computer Vision. Kluwer Academic Publ., Dordrecht (1995)

    Google Scholar 

  9. Granlund, G.H.: Fourier processing for hand print character recognition. IEEE Trans. Computers 21, 195–201 (1972)

    Article  MATH  MathSciNet  Google Scholar 

  10. Grassia, F.S.: Practical parameterization of rotations using the exponential map. Journal of Graphics Tools 3(3), 29–48 (1998)

    Google Scholar 

  11. Hartley, R.V.L.: A more symmetrical fourier analysis applied to transmission problems. In: Proc. IRE, vol. 30, pp. 144–150 (1942)

    Google Scholar 

  12. Hestenes, D.: The design of linar algebra and geometry. Acta Appl. Math. 23, 65–93 (1991)

    Article  MATH  MathSciNet  Google Scholar 

  13. Hestenes, D., Sobczyk, G.: Clifford Algebra to Geometric Calculus. D. Reidel Publ. Comp., Dordrecht (1984)

    MATH  Google Scholar 

  14. Kuhl, F.P., Giardina, C.R.: Elliptic fourier features of a closed contour. Computer Graphics and Image Processing 18, 236–258 (1982)

    Article  Google Scholar 

  15. Lasenby, A., Lasenby, J.: Surface evolution and representation using geometric algebra. In: Cipolla, R., Martin, R. (eds.) The Mathematics of Surfaces IX, pp. 144–168. Springer, London (2000)

    Google Scholar 

  16. Li, H., Hestenes, D., Rockwood, A.: Generalized homogeneous coordinates for computational geometry. In: Sommer, G. (ed.) Geometric Computing with Clifford Algebras, pp. 27–59. Springer, Heidelberg (2001)

    Google Scholar 

  17. McCarthy, J.M.: Introduction to Theoretical Kinematics. MIT Press, Cambridge (1990)

    Google Scholar 

  18. Murray, R.M., Li, Z., Sastry, S.S.: A Mathematical Introduction to Robotic Manipulation. CRC Press, Boca Raton (1994)

    MATH  Google Scholar 

  19. Needham, T.: Visual Complex Analysis. Clarendon Press, Oxford (1997)

    MATH  Google Scholar 

  20. Oppenheim, A.V., Schafer, R.W.: Discrete-Time Signal Processing. Prentice Hall Inc., Upper Saddle River (1989)

    MATH  Google Scholar 

  21. Perwass, C., Hildenbrand, D.: Aspects of geometric algebra in euclidean, projective and conformal space. Technical Report 0310, Technical Report, Christian-Albrechts-Universität zu Kiel, Institut für Informatik und Praktische Mathematik (2003)

    Google Scholar 

  22. Perwass, C., Sommer, G.: Numerical evaluation of versors with clifford algebra. In: Dorst, L., Doran, C., Lasenby, J. (eds.) Applications of Geometric Algebra in Computer Science and Engineering, pp. 341–350. Birkhäuser, Boston (2002)

    Google Scholar 

  23. Rooney, J.: A comparison of representations of general screw displacements. Environment and Planning B 5, 45–88 (1978)

    Article  Google Scholar 

  24. Rosenhahn, B.: Pose estimation revisited. Technical Report 0308, PhD thesis, Christian-Albrechts-Universität zu Kiel, Institut für Informatik und Praktische Mathematik (2003)

    Google Scholar 

  25. Rosenhahn, B., Perwass, C., Sommer, G.: Free-form pose estimation by using twist representations. Algorithmica 38, 91–113 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  26. Small, C.G.: The Statistical Theory of Shape. Springer, New York (1996)

    MATH  Google Scholar 

  27. Sommer, G.: Algebraic aspects of designing behavior based systems. In: Sommer, G., Koenderink, J.J. (eds.) AFPAC 1997. LNCS, vol. 1315, pp. 1–28. Springer, Heidelberg (1997)

    Chapter  Google Scholar 

  28. Sommer, G.: Geometric Computing with Clifford Algebras. Springer, Heidelberg (2001)

    MATH  Google Scholar 

  29. Turski, J.: Projective fourier analysis for patterns. Pattern Recognition 33, 2033–2043 (2000)

    Article  MATH  Google Scholar 

  30. Turski, J.: Geometric fourier analysis of the conformal camera for active vision. SIAM Review 46(2), 230–255 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  31. Wallace, T.P., Mitchell, O.R.: Analysis of three-dimensional movements using fourier descriptors. IEEE Trans. Pattern Analysis and Machine Intell. 2(6), 583–588 (1980)

    Google Scholar 

  32. Yaglom, M.: Felix Klein and Sophus Lie. Birkhäuser, Boston (1988)

    MATH  Google Scholar 

  33. Zahn, C.T., Roskies, R.Z.: Fourier descriptors for plane closed curves. IEEE Trans. Computers 21, 269–281 (1972)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Sommer, G., Rosenhahn, B., Perwass, C. (2005). Twists – An Operational Representation of Shape. In: Li, H., Olver, P.J., Sommer, G. (eds) Computer Algebra and Geometric Algebra with Applications. IWMM GIAE 2004 2004. Lecture Notes in Computer Science, vol 3519. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11499251_22

Download citation

  • DOI: https://doi.org/10.1007/11499251_22

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-26296-1

  • Online ISBN: 978-3-540-32119-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics