Skip to main content

Vision and Grasping: Humans vs. Robots

  • Conference paper

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 3561))

Abstract

Biomimetic robotics is a rapidly developing field, and the limited literature about biological inspiration in robot grasping at cognitive level suggests that the field has still much to offer.

Neuroscience studies indicate that vision-based reaching and grasping are important to the extent that an entire cortical pathway is dedicated to these skills. Nevertheless, recent findings point out the existence of strict relations between action-oriented (dorsal pathway) and categorization-oriented (ventral pathway) vision.

In this paper, we will compare present day research on vision-based robotic grasping with the above mentioned neuroscience findings. Then, we propose a new approach to vision for grasping in robotics, which aims at improving the emulation of human skills through the integration of the information flows proceeding from the two visual pathways.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Brooks, R.: Cambrian intelligence: the early history of the new AI. MIT Press, Cambridge (1999)

    MATH  Google Scholar 

  2. Arkin, R.: Behavior-Based Robotics. MIT Press, Cambridge (1998)

    Google Scholar 

  3. Braitenberg, V.: Vehicles: Experiments in Synthetic Psychology. MIT Press, Cambridge (1984)

    Google Scholar 

  4. Drumwright, E., Jenkins, O., Mataric, M.: Exemplar-based primitives for humanoid movement classification and control. In: IEEE Intl. Conf. on Robot. Automat., New Orleans, USA (2004)

    Google Scholar 

  5. Mataric, M.: Getting humanoids to move and imitate. IEEE Intelligent Systems 15, 18–24 (2000)

    Article  Google Scholar 

  6. Fadiga, L., Fogassi, L., Gallese, V., Rizzolatti, G.: Visuomotor neurons: ambiguity of the discharge or ’motor’ perception? Int. J. Psychophysiol. 35, 165–177 (2000)

    Article  Google Scholar 

  7. Rizzolatti, G., Luppino, G.: The cortical motor system. Neuron 31, 889–901 (2001)

    Article  Google Scholar 

  8. Gallese, V., Craighero, L., Fadiga, L., Fogassi, L.: Perception through action. Psyche - An interdisciplinary journal of research on consciousness 5 (1999)

    Google Scholar 

  9. Rizzolatti, G., Arbib, M.A.: Language within our grasp. Trends in Neurosciences 21, 188–194 (1998)

    Article  Google Scholar 

  10. Williams, J., Whiten, A., Suddendorf, T., Perrett, D.: Imitation, mirror neurons and autism. Neuroscience and Biobehavioural Review 25, 287–295 (2001)

    Article  Google Scholar 

  11. Bar-Cohen, Y., Breazeal, C.: Biologically Inspired Intelligent Robots. SPIE Press, CA (2003)

    Google Scholar 

  12. Milner, A., Goodale, M.: The visual brain in action. Oxford University Press, Oxford (1995)

    Google Scholar 

  13. Sakata, H., Taira, M., Kusunoki, M., Murata, A., Tanaka, Y.: The parietal association cortex in depth perception and visual control of the hand action. Trends in Neuroscience (1997)

    Google Scholar 

  14. Culham, J.: Human brain imaging reveals a parietal area specialized for grasping. In: Kanwisher, N., Duncan, J. (eds.) Functional Neuroimaging of Visual Cognition: Attention and Performance XX, pp. 417–438. Oxford University Press, Oxford (2004)

    Google Scholar 

  15. Jeannerod, M., Arbib, M., Rizzolatti, G., Sakata, H.: Grasping objects: the cortical mechanisms of visuomotor transformation. Trends in Neuroscience (1995)

    Google Scholar 

  16. Nakamura, H., Kuroda, T., Wakita, M., Kusunoki, M., Kato, A., Mikami, A., Sakata, H., Itoh, K.: From three-dimensional space vision to prehensile hand movements: The lateral intraparietal area links the area v3a and the anterior intraparietal area in macaques. The Journal of Neuroscience 21, 8174–8187 (2001)

    Google Scholar 

  17. Gegenfurtner, K., Kiper, D., Levitt, J.: Functional properties of neurons in macaque area V3. J. Neurophysiology 77, 1906–1923 (1997)

    Google Scholar 

  18. James, T., Humphrey, G., Gati, J., Menon, R., Goodale, M.: Differential effects of viewpoint on object-driven activation in dorsal and ventral streams. Neuron 35, 793–801 (2002)

    Article  Google Scholar 

  19. Ungerleider, L., Mishkin, M.: Two cortical visual systems. In: Ingle, D., Goodale, M., Mansfield, R. (eds.) Analysis of Visual Behavior, pp. 549–586. MIT Press, Cambridge (1982)

    Google Scholar 

  20. Lee, J.H., Van Donkelaar, P.: Dorsal and ventral visual stream contributions to perception-action interactions during pointing. Experimental Brain Research 143, 440–446 (2002)

    Article  Google Scholar 

  21. Fagg, A., Arbib, M.: Modeling parietal-premotor interactions in primate control of grasping. Neural Networks 11, 1277–1303 (1998)

    Article  Google Scholar 

  22. Rolls, E., Deco, G.: Computational Neuroscience of Vision. Oxford University Press, Oxford (2002)

    Google Scholar 

  23. Bicchi, A.: Hand for dexterous manipulation and robust grasping: A difficult road towards simplicity. IEEE Trans. Robot. Automat. 16, 652–662 (2000)

    Article  Google Scholar 

  24. Morales, A., Chinellato, E., Fagg, A., del Pobil, A.: Using experience for assessing grasp reliability. International Journal of Humanoid Robotics 1, 671–691 (2004)

    Article  Google Scholar 

  25. Moore, C., Engel, S.: Neural response to the perception of volume in the lateral occipital complex. Neuron 29, 277–286 (2001)

    Article  Google Scholar 

  26. Miller, A., Knopp, S., Christensen, H., Allen, P.: Automatic grasp planning using shape primitives. In: IEEE Intl. Conf. on Robot. Automat., Taipei, Taiwan (2003)

    Google Scholar 

  27. Cutkosky, M., Howe, R.: Human grasp choice and robotic grasp analysis. In: Venkataraman, S., Iberall, T. (eds.) Dextrous Robot Hands, pp. 5–31. Springer, Heidelberg (1990)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Chinellato, E., del Pobil, A.P. (2005). Vision and Grasping: Humans vs. Robots. In: Mira, J., Álvarez, J.R. (eds) Mechanisms, Symbols, and Models Underlying Cognition. IWINAC 2005. Lecture Notes in Computer Science, vol 3561. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11499220_38

Download citation

  • DOI: https://doi.org/10.1007/11499220_38

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-26298-5

  • Online ISBN: 978-3-540-31672-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics