Advertisement

Toward Automatic Motor Condition Diagnosis

  • J. Ilonen
  • P. Paalanen
  • J. -K. Kamarainen
  • T. Lindh
  • J. Ahola
  • H. Kälviäinen
  • J. Partanen
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3540)

Abstract

In this study a method for automatic motor condition diagnosis is proposed. The method is based on a statistical discriminance measure which can be used to select the most discriminative features. New signals are classified to either a normal condition class or a failure class. The classification can be done traditionally using training examples from the both classes or using only probability distribution of the normal condition samples. The latter corresponds to typical situations in practice where the amount of failure data is insufficient. The results are verified using real measurements from induction motors in normal condition and with bearing faults.

References

  1. 1.
    Benbouzid, M.E.H., Vieira, M., Theys, C.: Induction motors’ faults detection and localization using stator current advanced signal processing techniques. IEEE Transactions on Power Electronics 14(1), 14–22 (1999)CrossRefGoogle Scholar
  2. 2.
    Freund, Y., Schapire, R.E.: A decision theoretic generalization of on-line and an application to boosting. Journal of Computer and System Sciences 55(1), 119–139 (1997)zbMATHCrossRefMathSciNetGoogle Scholar
  3. 3.
    Hyvärinen, A., Karhunen, J., Oja, E.: Independent Component Analysis, ch. 2.7. John Wiley & Sons, Inc., Chichester (2001)CrossRefGoogle Scholar
  4. 4.
    Kamarainen, J.-K., Kyrki, V., Lindh, T., Ahola, J., Partanen, J.: Statistical signal discrimination for condition diagnosis. In: Proceedings of the Finnish Signal Processing Symposium, Tampere, Finland, pp. 195–198 (2003)Google Scholar
  5. 5.
    Lindh, T., Ahola, J., Kamarainen, J.-K., Kyrki, V., Partanen, J.: Bearing damage detection based on statistical discrimination of stator current. In: Proceedings of the 4th IEEE International Symposium on Diagnostics for Electric Machines, Power Electronics and Drives, Atlanta, Georgia, USA, pp. 177–181 (2003)Google Scholar
  6. 6.
    Paalanen, P., Kamarainen, J.-K., Ilonen, J., Kälviäinen, H.: Feature representation and discrimination based on Gaussian mixture model probability densities – practices and algorithms. Research Report 95, Department of Information Technology, Lappeenranta University of Technology (2005)Google Scholar
  7. 7.
    Peterson, D.W., Mattson, R.L.: A method of finding linear discriminant functions for a class of performance criteria. IEEE Transactions on Information Theory 12(3), 380–387 (1966)zbMATHCrossRefMathSciNetGoogle Scholar
  8. 8.
    Schiltz, R.L.: Forcing frequency identification of rolling element bearings. Sound and Vibration, 16–19 (1990)Google Scholar
  9. 9.
    Schoen, R.R., Habetler, T.G., Kamran, F., Bartfield, R.G.: Motor bearing damage detection using stator current monitoring. IEEE Transactions on Industry Applications 31(6), 1274–1279 (1995)CrossRefGoogle Scholar
  10. 10.
    Theodoridis, S., Koutroumbas, K.: Pattern Recognition. Academic Press, London (1999) (ISBN 0-12-686140-4)Google Scholar
  11. 11.
    Yazici, B., Kliman, G.B.: An adaptive statistical time-frequency method for detection of broken bars and bearing faults in motors using stator current. IEEE Transactions on Industry Applications 35, 442–452 (1999)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2005

Authors and Affiliations

  • J. Ilonen
    • 1
  • P. Paalanen
    • 1
  • J. -K. Kamarainen
    • 1
  • T. Lindh
    • 2
  • J. Ahola
    • 2
  • H. Kälviäinen
    • 1
  • J. Partanen
    • 2
  1. 1.Department of Information Technology 
  2. 2.Department of Electrical EngineeringLappeenranta University of TechnologyLappeenrantaFinland

Personalised recommendations