Fast Guaranteed Polygonal Approximations of Closed Digital Curves

  • Fabien Feschet
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3540)


We present in this paper a new non-parametric method for polygonal approximations of digital curves. In classical polygonal approximation algorithms, a starting point is randomly chosen on the curve and heuristics are used to ensure its effectiveness. We propose to use a new canonical representation of digital curves where no point is privileged. We restrict the class of approximation polygons to the class of digital polygonalizations of the curve. We describe the first algorithm which computes the polygon with minimal Integral Summed Squared Error in the class in both linear time and space, which is optimal, independently of any starting point.


  1. [Cor97]
    Cornic, P.: Another look at the dominant point detection of digital curves. Pattern Recognition Letters 18, 13–25 (1997)zbMATHCrossRefGoogle Scholar
  2. [DP73]
    Douglas, D.H., Pleucker, T.K.: Algorithm for the reduction of the number of points required to represent a line or its caricature. The Canadian Cartographer 10(2), 112–122 (1973)Google Scholar
  3. [DRFR05]
    Debled-Rennesson, I., Feschet, F., Rouyer, J.: Optimal blurred segments decomposition in linear time. In: Andrès, É., Damiand, G., Lienhardt, P. (eds.) DGCI 2005. LNCS, vol. 3429, pp. 371–382. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  4. [Fes05]
    Feschet, F.: Canonical representations of discrete curves. Pattern Analysis and Applications (2005) (Accepted for publication, to appear) Google Scholar
  5. [FT99]
    Feschet, F., Tougne, L.: Optimal time computation of the tangent of a discrete curve: application to the curvature. In: Bertrand, G., Couprie, M., Perroton, L. (eds.) DGCI 1999. LNCS, vol. 1568, pp. 31–40. Springer, Heidelberg (1999)CrossRefGoogle Scholar
  6. [FT03]
    Feschet, F., Tougne, L.: On the Min DSS Problem of Closed Discrete Curves. In: Del Lungo, A., Di Gesù, V., Kuba, A. (eds.) IWCIA. ENDM, vol. 12. Elsevier, Amsterdam (2003)Google Scholar
  7. [HL02]
    Horng, J.-H., Li, J.T.: An automatic and efficient dynamic programming algorithm for polygonal approximation of digital curves. Pattern Recognition Letters 23, 171–182 (2002)zbMATHCrossRefGoogle Scholar
  8. [II88]
    Imai, H., Iri, M.: Polygonal approximations of a curve (formulations and algorithms). In: Toussaint, G.T. (ed.) Computational Morphology, pp. 71–86. North-Holland, Amsterdam (1988)Google Scholar
  9. [KF04]
    Kolesnikov, A., Fränti, P.: Reduced-search dynamic programming for approximation of polygonal curves. Pattern Recognition Letters 24, 2243–2254 (2004)CrossRefGoogle Scholar
  10. [LL99]
    Latecki, L.J., Lakämper, R.: Convexity rule for shape decomposition based on discrete contour evolution. Computer Vision and Image Understanding 73(3), 441–454 (1999)CrossRefGoogle Scholar
  11. [Mar03]
    Marji, M.: On the detection of dominant points on digital planar curves. PhD thesis, Graduate School, Wayne State University (2003)Google Scholar
  12. [MS04]
    Marji, M., Siy, P.: Polygonal representation of digital planar curves through dominant point detection - a nonparametric algorithm. Pattern Recognition 37(11), 2113–2130 (2004)CrossRefGoogle Scholar
  13. [PV94]
    Perez, J.-C., Vidal, E.: Optimum polygonal approximation of digitized curves. Pattern Recognition Letters 15, 743–750 (1994)zbMATHCrossRefGoogle Scholar
  14. [RK04]
    Rosenfeld, A., Klette, R.: Digital Straightness – a review. Discrete Applied Math. 139(1–3), 197–230 (2004)zbMATHMathSciNetGoogle Scholar
  15. [RR92]
    Ray, B.K., Ray, K.S.: An algorithm for detecting dominant points and polygonal approximation of digitized curves. Pattern Recognition Letters 13, 849–856 (1992)CrossRefGoogle Scholar
  16. [Sal01]
    Salotti, M.: An efficient algorithm for the optimal polygonal approximation of digitized curves. Pattern Recognition Letters 22, 215–221 (2001)zbMATHCrossRefGoogle Scholar
  17. [Sal02]
    Salotti, M.: Optimal polygonal approximation of digitized curves using the sum of square deviations criterion. Pattern Recognition 35, 435–443 (2002)zbMATHCrossRefGoogle Scholar
  18. [Sch03]
    Schrijver, A.: Combinatorial Optimization - Polyhedra and Efficiency. Springer, Berlin (2003)zbMATHGoogle Scholar
  19. [SRS03]
    Sarkar, B., Roy, S., Sarkar, D.: Hierarchical representation of digitized curves through dominant point detection. Pattern Recognition Letters 24, 2869–2882 (2003)zbMATHCrossRefGoogle Scholar
  20. [TC89]
    Teh, C.-H., Chin, R.T.: On the detection of dominant points on digital curves. IEEE Trans. Pattern Anal. and Machine Intell. 11(8), 859–872 (1989)CrossRefGoogle Scholar
  21. [ZL04]
    Zhang, D., Lu, G.: Review of shape representation and description techniques. Pattern Recognition 37(1–3), 1–19 (2004)zbMATHCrossRefMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2005

Authors and Affiliations

  • Fabien Feschet
    • 1
  1. 1.LLAIC1 LaboratoryIUT Clermont-FerrandAubière CedexFrance

Personalised recommendations