Feature Extraction for Oil Spill Detection Based on SAR Images

  • Camilla Brekke
  • Anne H. S. Solberg
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3540)


Algorithms based on SAR images for the purpose of detecting illegal oil spill pollution in the marine environment are studied. This paper focus on the feature extraction step, aiming at identifying features that lead to significant improvements in classification performance compared to earlier reported results. Both traditional region descriptors, features tailored to oil spill detection and techniques originally associated with other applications are evaluated. Experimental results show an increase from 89% to 97% in the number of suspected oil spills detected.


Feature Extraction Synthetic Aperture Radar Synthetic Aperture Radar Image Sobel Operator Edge Segment 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Frate, F.D., Petrocchi, A., Lichtenegger, J., Calabresi, G.: Neural networks for oil spill detection using ERS-SAR data. IEEE Trans. on Geos. and Remote Sensing 38, 2282–2287 (2000)CrossRefGoogle Scholar
  2. 2.
    Fiscella, B., Giancaspro, A., Nirchio, F., Pavese, P., Trivero, P.: Oil spill detection using marine SAR images. Int. J. of Remote Sensing 21, 3561–3566 (2000)CrossRefGoogle Scholar
  3. 3.
    Solberg, A.H.S., Storvik, G., Solberg, R., Volden, E.: Automatic detection of oil spills in ERS SAR images. IEEE Trans. on Geos. and Remote Sensing 37, 1916–1924 (1999)CrossRefGoogle Scholar
  4. 4.
    Solberg, A.H.S., Solberg, R.: A large-scale evaluation of features for automatic detection of oil spills in ERS SAR images. In: Proc. IGARSS 1996, May 27-31, vol. 3, pp. 1484–1486 (1996)Google Scholar
  5. 5.
    Topouzelis, K., Karathanassi, V., Pavlakis, P., Rokos, D.: Oil spill detection: SAR multi-scale segmentation & object features evaluation. In: Proc. SPIE. Remote sensing of the ocean and sea ice 2002, September 23-27, vol. 4880, pp. 77–87 (2003)Google Scholar
  6. 6.
    Solberg, A.H.S., Brekke, C., Solberg, R., Husøy, P.O.: Algorithms for oil spill detection in Radarsat and ENVISAT SAR images. In: Proc. IGARSS 2004, September 20-24, vol. 7, pp. 4909–4912 (2004)Google Scholar
  7. 7.
    Girard-Ardhuin, F., Mercier, G., Garello, R.: Oil slick detection by SAR imagery: potential and limitation. In: Proc. OCEANS 2003, vol. 1, pp. 164–169 (2003)Google Scholar
  8. 8.
    Nixon, M., Aguado, A.: Feature Extraction & Image Processing. Newnes (2002)Google Scholar
  9. 9.
    Lobregt, S., Viergever, M.A.: A discrete dynamic contour model. IEEE Trans. on Med. Imaging 14, 12–24 (1995)CrossRefGoogle Scholar
  10. 10.
    Indregard, M., Solberg, A., Clayton, P.: D2-report on benchmarking oil spill recognition approaches and best practice. Technical report, Oceanides, EC, Archive No. 04-10225-A-Doc, Contr. No: EVK2-CT-2003-00177 (2004)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2005

Authors and Affiliations

  • Camilla Brekke
    • 1
    • 2
  • Anne H. S. Solberg
    • 2
  1. 1.Norwegian Defence Research EstablishmentKjellerNorway
  2. 2.Department of InformaticsUniversity of OsloOsloNorway

Personalised recommendations