A Versatile Model-Based Visibility Measure for Geometric Primitives

  • Marc M. Ellenrieder
  • Lars Krüger
  • Dirk Stößel
  • Marc Hanheide
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3540)


In this paper, we introduce a novel model-based visibility measure for geometric primitives called visibility map. It is simple to calculate, memory efficient, accurate for viewpoints outside the convex hull of the object and versatile in terms of possible applications. Several useful properties of visibility maps that show their superiority to existing visibility measures are derived. Various example applications from the automotive industry where the presented measure is used successfully conclude the paper.


Visibility Measure Full Visibility Geometric Primitive Inspection Task Spherical Grid 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Chen, S.Y., Li, Y.F.: A method of automatic sensor placement for robot vision in inspection tasks. In: Proc. IEEE Int. Conf. Rob. & Automat., Washington, DC, May 2002, pp. 2545–2550 (2002)Google Scholar
  2. 2.
    Cowan, C., Kovesi, P.: Automatic sensor placement from vision task requirements. IEEE Trans. Pattern Anal. Machine Intell. 10, 407–416 (1988)CrossRefGoogle Scholar
  3. 3.
    Cuisenaire, O.: Distance transformations: fast algorithms and applications to medical image processing, PhD thesis, Univ. cath. de Louvain, Belgium (October 1999)Google Scholar
  4. 4.
    Ellenrieder, M.M., Komoto, H.: Model-based automatic calculation and evaluation of camera position for industrial machine vision. In: Proc. SPIE Computational Imaging III (2005)Google Scholar
  5. 5.
    Ellenrieder, M.M., et al.: Reflectivity Function based Illumination and Sensor Planning for industrial inspection. In: Proc. SPIE Opt. Metrology Symp., Munich (2005)Google Scholar
  6. 6.
    Kefalea, E., Rehse, O., Malsburg, C.v.d.: Object Classification based on Contours with Elastic Graph Matching. In: Proc. 3rd Int. Workshop Vis. Form (1997)Google Scholar
  7. 7.
    Khawaja, K., et al.: Camera and light placement for automated visual assembly inspection. In: Proc. IEEE Int. Conf. Robotics & Automation, Minneapolis, MN, April 1996, pp. 3246–3252 (1996)Google Scholar
  8. 8.
    Koenderink, J.J., van Doorn, A.J.: The internal representation of solid shape with respect to vision. Biol. Cybern 32, 151–158 (1979)CrossRefGoogle Scholar
  9. 9.
    Kölzow, T., Ellenrieder, M.M.: A general approach for multi-feature, multi-sensor classification and localization of 3d objects in 2d image sequences. In: Proc. SPIE Electronic Imaging Conf., vol. 5014, pp. 99–110 (2003)Google Scholar
  10. 10.
    Stößel, D., et al.: Viewpoint selection for industrial car assembly. In: Rasmussen, C.E., Bülthoff, H.H., Schölkopf, B., Giese, M.A. (eds.) DAGM 2004. LNCS, vol. 3175, pp. 528–535. Springer, Heidelberg (2004)Google Scholar
  11. 11.
    Tarabanis, K.A., et al.: Computing occlusion-free viewpoints. IEEE Trans. Pattern Anal. Machine Intell. 18, 279–292 (1996)CrossRefGoogle Scholar
  12. 12.
    Trucco, E., et al.: Model-based planning of optimal sensor placements for inspection. IEEE Trans. Robot. Automat. 13, 182–194 (1997)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2005

Authors and Affiliations

  • Marc M. Ellenrieder
    • 1
  • Lars Krüger
    • 1
  • Dirk Stößel
    • 2
  • Marc Hanheide
    • 2
  1. 1.Research & TechnologyDaimlerChrysler AGUlmGermany
  2. 2.Faculty of TechnologyBielefeld UniversityBielefeldGermany

Personalised recommendations