MSCC: Maximally Stable Corner Clusters

  • Friedrich Fraundorfer
  • Martin Winter
  • Horst Bischof
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3540)


A novel distinguished region detector, complementary to existing approaches like Harris-corner detectors, Difference of Gaussian detectors (DoG) or Maximally Stable Extremal Regions (MSER) is proposed. The basic idea is to find distinguished regions by clusters of interest points. In order to determine the number of clusters we use the concept of maximal stableness across scale. Therefore, the detected regions are called: Maximally Stable Corner Clusters (MSCC). In addition to the detector, we propose a novel joint orientation histogram (JOH) descriptor ideally suited for regions detected by the MSCC detector. The descriptor is based on the 2D joint occurrence histograms of orientations. We perform a comparative detector and descriptor analysis based on the recently proposed framework of Mikolajczyk and Schmid, we present evaluation results on additional non-planar scenes and we evaluate the benefits of combining different detectors.


Minimal Span Tree Interest Point Viewpoint Change Interest Point Detector Harris Corner 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Matas, J., Chum, O., Urban, M., Pajdla, T.: Robust wide baseline stereo from maximally stable extremal regions. In: Proc. 13th British Machine Vision Conference, Cardiff, UK, pp. 384–393 (2002)Google Scholar
  2. 2.
    Tuytelaars, T., Gool, L.V.: Matching widely separated views based on affine invariant regions. International Journal of Computer Vision 1, 61–85 (2004)CrossRefGoogle Scholar
  3. 3.
    Sivic, J., Zisserman, A.: Video Google: A text retrieval approach to object matching in videos. In: Proceedings of the International Conference on Computer Vision (2003)Google Scholar
  4. 4.
    Mikolajczyk, K., Schmid, C.: Indexing based on scale invariant interest points. In: Proc. 8th IEEE International Conference on Computer Vision, Vancouver, Canada, vol. I, pp. 525–531 (2001)Google Scholar
  5. 5.
    Lowe, D.: Distinctive image features from scale-invariant keypoints. International Journal of Computer Vision 60, 91–110 (2004)CrossRefGoogle Scholar
  6. 6.
    Fergus, R., Perona, P., Zisserman, A.: Object class recognition by unsupervised scale-invariant learning. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (2003)Google Scholar
  7. 7.
    Kadir, T., Zisserman, A., Brady, M.: An affine invariant salient region detector. In: Proc. 7th European Conference on Computer Vision, Prague, Czech Republic. pp. 228–241 (2004)Google Scholar
  8. 8.
    Harris, C., Stephens, M.: A combined corner and edge detector. In: Alvey Vision Conference (1988)Google Scholar
  9. 9.
    Mikolajczyk, K., Schmid, C.: An affine invariant interest point detector. In: Proc. 7th European Conference on Computer Vision, Copenhagen, Denmark, vol. I, p. 128 (2002)Google Scholar
  10. 10.
    Lindeberg, T.: Feature detection with automatic scale selection. International Journal of Computer Vision 30, 79–116 (1998)CrossRefGoogle Scholar
  11. 11.
    Brown, M., Lowe, D.: Invariant features from interest point groups. In: Proc. 13th British Machine Vision Conference, Cardiff, UK. Poster Session (2002)Google Scholar
  12. 12.
    Schmid, C., Mohr, R., Bauckhage, C.: Evaluation of interest point detectors. International Journal of Computer Vision 37, 151–172 (2000)zbMATHCrossRefGoogle Scholar
  13. 13.
    Bigün, J., Granlund, G.H.: Optimal orientation detection of linear symmetry. In: Proceedings of the IEEE First International Conference on Computer Vision, London, Great Britain, pp. 433–438 (1987)Google Scholar
  14. 14.
    Cormen, T., Leiserson, C., Rivest, R.: Introduction to Algorithms. MIT Press, Cambridge (1990)zbMATHGoogle Scholar
  15. 15.
    Fukunaga, K.: Introduction to Statistical Pattern Recognition. Academic Press Professional, London (1990)zbMATHGoogle Scholar
  16. 16.
    Mikolajczyk, K., Schmid, C.: Comparison of affine-invariant local detectors and descriptors. In: Proc. 12th European Signal Processing Conference, Vienna, Austria (2004)Google Scholar
  17. 17.
    Fraundorfer, F., Bischof, H.: Evaluation of local detectors on non-planar scenes. In: Proc. 28th Workshop of the Austrian Association for Pattern Recognition, Hagenberg, Austria, pp. 125–132 (2004)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2005

Authors and Affiliations

  • Friedrich Fraundorfer
    • 1
  • Martin Winter
    • 1
  • Horst Bischof
    • 1
  1. 1.Institute for Computer Graphics and VisionGraz University of TechnologyGrazAustria

Personalised recommendations