Non-rigid Registration Using Morphons

  • Andreas Wrangsjö
  • Johanna Pettersson
  • Hans Knutsson
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3540)


The Morphon, a non-rigid registration method is presented and applied to a number of registration applications. The algorithm takes a prototype image (or volume) and morphs it into a target image using an iterative, multi-resolution technique. The deformation process is done in three steps: displacement estimation, deformation field accumulation and deformation. The framework could be described in very general terms, but in this paper we focus on a specific implementation of the Morphon framework. The method can be employed in a wide range of registration tasks, which is shown in four very different registration examples; 2D photographs of hands and faces, 3D CT data of the hip region, and 3D MR brain images.


Target Image Registration Method Deformation Model Local Phase Local Displacement 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Barron, J.L., Fleet, D.J., Beauchemin, S.S.: Performance of optical flow techniques. Int. J. of Computer Vision 12(1), 43–77 (1994)CrossRefGoogle Scholar
  2. 2.
    Farnebäck, G.: Polynomial Expansion for Orientation and Motion Estimation. PhD thesis, Linköping University, Sweden, SE-581 83 Linköping, Sweden, Dissertation No. 790 (2002), ISBN 91-7373-475-6Google Scholar
  3. 3.
    Felsberg, M.: Disparity from monogenic phase. In: Van Gool, L. (ed.) DAGM 2002. LNCS, vol. 2449, pp. 248–256. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  4. 4.
    Fleet, D.J., Jepson, A.D.: Computation of Component Image Velocity from Local Phase Information. Int. Journal of Computer Vision 5(1), 77–104 (1990)CrossRefGoogle Scholar
  5. 5.
    Granlund, G.H., Knutsson, H.: Signal Processing for Computer Vision. Kluwer Academic Publishers, Dordrecht (1995), ISBN 0-7923-9530-1Google Scholar
  6. 6.
    Hemmendorff, M.: Motion Estimation and Compensation in Medical Imaging. PhD thesis, Linköping University, Sweden, SE-581 85 Linköping, Sweden, Dissertation No. 703 (2001), ISBN 91-7373-060-2Google Scholar
  7. 7.
    Horn, B.K.P., Schunck, B.G.: Determining optical flow. Artificial Intelligence 17, 185–204 (1981)CrossRefGoogle Scholar
  8. 8.
    Pluim, J.P.W., Maintz, J.B.A., Viergever, M.A.: Mutual-information-based registration of medical images: A survey. IEEE Transactions on Medical Imaging 22(8), 986–1004 (2003)CrossRefGoogle Scholar
  9. 9.
    Zitova, B., Flusser, J.: Image registration methods: a survey. Image and Vision Computing 21(11), 977–1000 (2003)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2005

Authors and Affiliations

  • Andreas Wrangsjö
    • 1
  • Johanna Pettersson
    • 1
  • Hans Knutsson
    • 1
  1. 1.Medical Informatics, Department of Biomedical Engineering, and Center for Medical Image Science and VisualizationLinköping UniversitySweden

Personalised recommendations