Levelset and B-Spline Deformable Model Techniques for Image Segmentation: A Pragmatic Comparative Study

  • Diane Lingrand
  • Johan Montagnat
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3540)


Deformable contours are now widely used in image segmentation, using different models, criteria and numerical schemes. Some theoretical comparisons between some deformable model methods have already been published [1]. Yet, very few experimental comparative studies on real data have been reported. In this paper, we compare a levelset with a B-spline based deformable model approach in order to understand the mechanisms involved in these widely used methods and to compare both evolution and results on various kinds of image segmentation problems. In general, both methods yield similar results. However, specific differences appear when considering particular problems.


Image Segmentation Active Contour Deformable Model Active Contour Model Uniform Background 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Aubert, G., Blanc-FTéraud, L.: Some remarks on the equivalence between 2D and 3D classical snakes and geodesic active contours. IJCV 34(1), 5–17 (1999)CrossRefGoogle Scholar
  2. 2.
    Caselles, V., Catte, F., Coll, T., Dibos, F.: A geometric model for active contours in image processing. Numerische Mathematik 66, 1–33 (1993)zbMATHCrossRefMathSciNetGoogle Scholar
  3. 3.
    Caselles, V., Kimmel, R., Sapiro, G.: Geodesic active contours. International Journal of Computer Vision 22(1), 61–79 (1997)zbMATHCrossRefGoogle Scholar
  4. 4.
    Cohen, L.D., Kimmel, R.: Global minimum for active contour models: A minimal path approach. Int. J. of Computer Vision 24(1), 57–78 (1997)CrossRefGoogle Scholar
  5. 5.
    Droske, M., Meyer, B., Rumpf, M., Schaller, C.: An adaptive level set method for medical image segmentation. In: Insana, M.F., Leahy, R.M. (eds.) IPMI 2001. LNCS, vol. 2082, p. 416. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  6. 6.
    Gomes, J., Faugeras, O.: Segmentation of the inner and outer surfaces of the cortex in man and monkey: an approach based on Partial Differential Equations. In: Proc. of the 5th Int. Conf. on Functional Mapping of the Human Brain (1999)Google Scholar
  7. 7.
    Kass, M., Witkin, A., Terzopoulos, D.: SNAKES: Active contour models. International Journal of Computer Vision 1, 321–332 (1988)CrossRefGoogle Scholar
  8. 8.
    Lingrand, D., Charnoz, A., Koulibaly, P.M., Darcourt, J., Montagnat, J.: Toward accurate segmentation of the LV myocardium and chamber for volumes estimation in gated SPECT sequences. In: Pajdla, T., Matas, J(G.) (eds.) ECCV 2004. LNCS, vol. 3024, pp. 267–278. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  9. 9.
    Malladi, R., Sethian, J.A.: A Real-Time Algorithm for Medical Shape Recovery. In: ICCV 1998, Bombay, India, January 1998, pp. 304–310 (1998)Google Scholar
  10. 10.
    Malladi, R., Sethian, J.A., Vemuri, B.C.: Shape modeling with front propagation: A level set approach. IEEE Trans. on PAMI 17(2), 158–175 (1995)Google Scholar
  11. 11.
    McInerney, T., Terzopoulos, D.: Deformable models in medical image analysis: a survey. Medical Image Analysis 1(2), 73–91 (1996)CrossRefGoogle Scholar
  12. 12.
    Montagnat, J., Delingette, H.: A review of deformable surfaces: topology, geometry and deformation. Image and Vision Comput. 19(14), 1023–1040 (2001)CrossRefGoogle Scholar
  13. 13.
    Osher, S., Sethian, J.A.: Fronts propagating with curvature dependent speed: algorithms based on the Hamilton-Jacobi formulation. Journal of Computational Physics 79, 12–49 (1988)zbMATHCrossRefMathSciNetGoogle Scholar
  14. 14.
    Paragios, N., Deriche, R.: Geodesic active contours and level sets for the detection and tracking of moving objects. IEEE Trans. PAMI 22(3), 266–280 (2000)Google Scholar
  15. 15.
    Paragios, N., Rousson, M., Ramesh, V.: Knowledge-based registration and segmentation of the left ventricle: A level set approach. In: IEEE Workshop on Applications in Computer Vision, Orlando, Florida (December 2002)Google Scholar
  16. 16.
    Precioso, F., Barlaud, M.: B-spline active contour with handling of topological changes for fast video segmentation. In: EURASIP, vol. 2002 (6), pp. 555–560 (2002)Google Scholar
  17. 17.
    Ronfard, R.: Region-based strategies for active contour models. International Journal of Computer Vision 13(2), 229–251 (1994)CrossRefGoogle Scholar
  18. 18.
    Terzopoulos, D., Witkin, A., Kass, M.: Constraints on deformable models: Recovering 3d shape and non rigid motion. Artificial Intelligence 36(1), 91–123 (1988)zbMATHCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2005

Authors and Affiliations

  • Diane Lingrand
    • 1
  • Johan Montagnat
    • 1
  1. 1.Rainbow Team, I3S Laboratory UMR 6070 UNSA/CNRSSophia Antipolis CedexFrance

Personalised recommendations