Advertisement

Thickness Estimation of Discrete Tree-Like Tubular Objects: Application to Vessel Quantification

  • D. Chillet
  • N. Passat
  • M. -A. Jacob-Da Col
  • J. Baruthio
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3540)

Abstract

Thickness estimation of discrete objects is often a critical step for shape analysis and quantification in medical applications. In this paper, we propose an approach to estimate the thickness (diameter or cross-section area) of discrete tree-like tubular objects in 3D binary images. The estimation is performed by an iterative process involving skeletonization, skeleton simplification, discrete cross-section plane evaluation and finally area estimation. The method is essentially based on discrete geometry concepts (skeleton, discrete planes, and discrete area). It has been validated on phantoms in order to determine its robustness in case of thickness variations along the studied object. The method has also been applied for vessel quantification and computer-aided diagnosis of vascular pathologies in angiographic data, providing promising results.

Keywords

thickness estimation discrete tree-like tubular objects vascular imaging vessel quantification computer-aided diagnosis 

References

  1. 1.
    Borgefors, G., Nyström, I., Sanniti di Baja, G.: Computing skeletons in three dimensions. Pattern Recognition 32, 1225–1236 (1999)CrossRefGoogle Scholar
  2. 2.
    Chen, S.Y.J., Caroll, J.D., Messenger, J.C.: Quantitative analysis of reconstructed 3D coronary arterial tree and intracoronary devices. IEEE Transactions on Medical Imaging 21, 724–740 (2002)CrossRefGoogle Scholar
  3. 3.
    Chen, Z., Molloi, S.: Automatic 3D vascular tree construction in CT angiography. Computerized Medical Imaging and Graphics 27, 469–479 (2003)CrossRefGoogle Scholar
  4. 4.
    Coeurjolly, D.: Algorithmique et géometrie discrète pour la caractérisation des courbes et des surfaces. PhD Thesis, Université Lumière, Lyon 2 (2002), http://liris.cnrs.fr/david.coeurjolly/These/these.pdf
  5. 5.
    Duda, O., Hart, P.E.: Pattern Classification and Scene Analysis. John Wiley & Sons Inc., Chichester (1973)zbMATHGoogle Scholar
  6. 6.
    Frangi, A.F., Niessen, W.J., Nederkoorn, P.J., Bakker, J., Mali, W.P.T.M., Viergever, M.A.: Quantitative analysis of vascular morphology from 3D MR angiograms: in vitro and in vivo results. Magnetic Resonance in Medicine 45, 311–322 (2001)CrossRefGoogle Scholar
  7. 7.
    Hoogeveen, R.M., Bakker, C.J.G., Mali, W., Viergever, M.A.: Vessel diameter measurement in TOF and PC angiography: a need for standardization. In: Annual Meeting of the International Society for Magnetic Resonance in Medicine, vol. 1847 (1997)Google Scholar
  8. 8.
    Nyström, I., Smedby, O.: New presentation method for magnetic resonance angiography images based on skeletonization. In: Proc. SPIE Medical Imaging: Image Display and Visualization 2000, vol. 3976, pp. 515–522 (2000)Google Scholar
  9. 9.
    Passat, N., Ronse, C., Baruthio, J., Armspach, J.-P., Maillot, C., Jahn, C.: Atlas-based method for segmentation of cerebral vascular trees from phase-contrast magnetic resonance angiography. In: Proc. SPIE Medical Imaging: Image Processing 2004, vol. 5370, pp. 420–431 (2004)Google Scholar
  10. 10.
    Passat, N., Ronse, C., Baruthio, J., Armspach, J.-P., Maillot, C.: Cerebral vascular atlas generation for anatomical knowledge modeling and segmentation purpose. To appear in IEEE Computer Vision and Pattern Recognition (2005)Google Scholar
  11. 11.
    Reveillès, J.P.: Combinatorial pieces in digital lines and planes. In: Proc. Vision Geometry, vol. IV, pp. 23–34 (1995)Google Scholar
  12. 12.
    Sorantin, E., Halmai, C., Erdohelyi, B., Palagyi, K., Nyul, L.G., Olle, K., Geiger, B., Lindbichler, F., Friedrich, G., Kiesler, K.: Spiral-CT-based assessment of tracheal stenoses using 3D skeletonization. IEEE Transactions on Medical Imaging 21, 263–273 (2002)CrossRefGoogle Scholar
  13. 13.
    Stevanov, M., Baruthio, J., Eclancher, B.: Fabrication of elastomer arterial models with specified compliance. Journal of Applied Physiology 88, 1291–1294 (2000)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2005

Authors and Affiliations

  • D. Chillet
    • 1
    • 2
    • 3
  • N. Passat
    • 1
    • 2
  • M. -A. Jacob-Da Col
    • 1
  • J. Baruthio
    • 2
  1. 1.LSIIT, UMR 7005 CNRS-ULPIllkirch cedexFrance
  2. 2.Faculté de MédecineIPB, UMR 7004 CNRS-ULPStrasbourg cedexFrance
  3. 3.École Supérieure Chimie Physique Électronique de LyonVilleurbanne cedexFrance

Personalised recommendations