Geometrical Computer Vision from Chasles to Today

  • K. Åström
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3540)


In this talk I will present geometrical computer vision from its early beginnings in projective geometry and photogrammetry to new research on methods in algebraic geometry. In the talk I will give examples of theory for minimal structure and motion problems (central and non-central cameras, 1D and 2D retina), critical configurations and geometry in general as well as practical results of using such theory in 3D reconstruction, navigation, modelling and image interpretation.


Computer Vision IEEE Computer Society Projective Geometry Minimal Structure Bundle Adjustment 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Åström, K., Kahl, F.: Motion estimation in image sequences using the deformation of apparent contours. IEEE Trans. Pattern Analysis and Machine Intelligence 21(2), 114–127 (1999)CrossRefGoogle Scholar
  2. 2.
    Åström, K., Kahl, F.: Ambiguous configurations for the 1d structure and motion problem. Journal of Mathematical Imaging and Vision 18(2), 191–203 (2003)zbMATHCrossRefMathSciNetGoogle Scholar
  3. 3.
    Åström, K., Oskarsson, M.: Solutions and ambiguities of the structure and motion problem for 1d retinal vision. Journal of Mathematical Imaging and Vision 12(2), 121–135 (2000)zbMATHCrossRefMathSciNetGoogle Scholar
  4. 4.
    Berthilsson, R., Åström, K., Heyden, A.: Reconstruction of curves in r 3 using factorization and bundle adjustment. Int. Journal of Computer Vision 41(3), 171–182 (2001)zbMATHCrossRefGoogle Scholar
  5. 5.
    Buchanan, T.: Photogrammetry and projective geometry - an historical survey. In: SPIE, vol. 1944, pp. 82–91 (1993)Google Scholar
  6. 6.
    Chasles, M.: Question 296. Nouv. Ann. Math. 14(50) (1855)Google Scholar
  7. 7.
    Heyden, A.: Reconstruction from image sequences by means of relative depths. Int. Journal of Computer Vision 24(2), 155–161 (1997); also In: Proc. of the 5th International Conference on Computer Vision, pp. 1058-1063. IEEE Computer Society Press, Los AlamitosCrossRefGoogle Scholar
  8. 8.
    Kruppa, E.: Zur Ermittlung eines Objektes Zwei Perspektiven mit innerer Orientierung. Sitz-Ber. Akad. Wiss., Wien, math. naturw. Kl. Abt IIa(122), 1939–1948 (1939)Google Scholar
  9. 9.
    Nistér, D.: An efficient solution to the five-point relative pose problem. In: Proc. Conf. Computer Vision and Pattern Recognition, vol. 2, pp. 195–202. IEEE Computer Society Press, Los Alamitos (2003)Google Scholar
  10. 10.
    Nistér, D., Schaffalitzky, F.: What do four points in two calibrated images tell us about the epipoles? In: Proc. 8th European Conf. on Computer Vision, Czech Republic, Prague (2004)Google Scholar
  11. 11.
    Schubert, H.: Die trilineare beziehung zwischen drei einstufigen grundgebilden. Mathematische Annalen 17 (1880)Google Scholar
  12. 12.
    Shashua, A.: Trilinearity in visual recognition by alignment. In: Proc. 3rd European Conf. on Computer Vision, Stockholm, Sweden, pp. 479–484 (1994)Google Scholar
  13. 13.
    Stefanovic, P.: Relative orientation - a new appraoch. ITC Journal 3, 417–448 (1973)Google Scholar
  14. 14.
    Stewénius, H.: Gröbner Basis Methods for Minimal Problems in Computer Vision. PhD thesis, Lund University (2005)Google Scholar
  15. 15.
    Stewńius, H., Kahl, F., Nistér, D., Schaffalitzky, F.: A minimal solution for relative pose with unknown focal length. In: Proc. Conf. Computer Vision and Pattern Recognition, San Diego, USA (2005)Google Scholar
  16. 16.
    Triggs, B.: Matching constraints and the joint image. In: Proc. 5th Int. Conf. on Computer Vision, pp. 338–343. MIT, Boston (1995)CrossRefGoogle Scholar
  17. 17.
    Vijayakumar, B., Kriegman, D., Ponce, J.: Structure and motion of curved 3D objects from monocular silhouettes. In: Proc. Conf. Computer Vision and Pattern Recognition, pp. 327–334 (1996)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2005

Authors and Affiliations

  • K. Åström
    • 1
  1. 1.Centre For Mathematical SciencesLund UniversityLundSweden

Personalised recommendations