Optimal Encoding of Vector Data with Polygonal Approximation and Vertex Quantization

  • Alexander Kolesnikov
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3540)


Problem of lossy compression of vector data is considered. We attack the problem by jointly considering data reduction by polygonal approximation and quantization of the prediction errors for approximation nodes. Optimal algorithms proposed for vector data encoding with minimal distortion for given target bit-rate, and with minimal bit-rate for given maximum deviation.


Prediction Error Vector Data Curve Segment Quantization Step Lossy Compression 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Dunham, J.: Optimum uniform piecewise linear approximation of planar curves. IEEE Trans. Pattern Analysis and Machine Intelligence 8, 67–75 (1986)CrossRefGoogle Scholar
  2. 2.
    Chung, J.-W., Lee, J.-.H., Moon, J.-H., Kim, J.-.K.: A new vertex-based binary shape coder for high coding efficiency. Signal Processing: Image Communication 15, 665–684 (2000)CrossRefGoogle Scholar
  3. 3.
    Gersho, A., Gray, M.: Vector Quantization and Signal Compression. Kluwer Int. Series in Engineering and Computer Science 152 (1992)Google Scholar
  4. 4.
    Gray, R.M., Neuhoff, D.L.: Quantization. IEEE Trans. Information Theory 44, 2325–2383 (1998)zbMATHCrossRefMathSciNetGoogle Scholar
  5. 5.
    Imai, H., Iri, M.: Computational-geometric methods for polygonal approximations of a curve. Computer Vision, Graphics and Image Process 36, 31–41 (1986)CrossRefGoogle Scholar
  6. 6.
    Imai, H., Iri, M.: Polygonal approximations of a curve (formulations and algorithms). In: Toussaint, G.T. (ed.) Computational Morphology, pp. 71–86. North-Holland, Amsterdam (1988)Google Scholar
  7. 7.
    Hu, M., Worrall, S., Sadka, A., Kondoz, A.M.: A scalable vertex-based shape intra-coding scheme for video objects. In: Proc. Int. Conf. Acoustics, Speech, and Signal Process.-ICASSP 2004, vol. 3, pp. 273–276 (2004)Google Scholar
  8. 8.
    Katsaggelos, A.K., Kondi, L.P., Meier, F.W., Ostermann, J., Schuster, G.M.: MPEG-4 and rate-distortion-based shape-coding techniques. Proc. IEEE 86, 1126–1154 (1998)CrossRefGoogle Scholar
  9. 9.
    Kim, J.I., Bovik, A.C., Evans, B.L.: Generalized predictive binary shape coding using polygon approximations. Signal Processing: Image Communication 15, 643–663 (2000)CrossRefGoogle Scholar
  10. 10.
    Kolesnikov, A., Fränti, P.: Reduced-search dynamic programming for approximation of polygonal curves. Pattern Recognition Letters 24, 2243–2254 (2003)zbMATHCrossRefGoogle Scholar
  11. 11.
    Kolesnikov, A., Fränti, P.: Data reduction of large vector graphics. Pattern Recognition 38, 381–394 (2005)zbMATHCrossRefGoogle Scholar
  12. 12.
    Akimov, A., Kolesnikov, A., Fränti, P.: Coordinate quantization in vector map compression. In: Proc. IASTED Int. Conf. Visualization, Imaging and Image Process.-VIIP 2004, pp. 748–753 (2004)Google Scholar
  13. 13.
    Le Buhan, C., Ebrahimi, T.: Progressive polygon. encoding of shape contours. In: In: Proc. Int. Conf. Image Processing and its Applications, pp. 17–21 (1997)Google Scholar
  14. 14.
    Li, Z., Openshaw, S.: Algorithms for objective generalization of line features based on the natural principle. Int. J.Geographical Information Systems 6, 373–389 (1992)CrossRefGoogle Scholar
  15. 15.
    Perez, J.C., Vidal, E.: Optimum polygonal approximation of digitized curves. Pattern Recognition Letters 15, 743–750 (1994)zbMATHCrossRefGoogle Scholar
  16. 16.
    Servais, M., Vlachos, T.: Progressive polygon encoding of segmentation maps. In: Proc. Int. Conf. Image Process.-ICIP 2004, Singapore, pp. 1121–1124 (2004)Google Scholar
  17. 17.
    Schuster, G.M., Melnikov, G., Katsaggelos, A.K.: Operationally optimal vertex-based shape coding. IEEE Signal Processing Magazine 15, 91–108 (1998)CrossRefGoogle Scholar
  18. 18.
    Schuster, G.M., Katsaggelos, A.K.: An optimal polygonal boundary encoding scheme in the rate-distortion sense. IEEE Trans. Image Proc. 7, 13–26 (1998)zbMATHCrossRefMathSciNetGoogle Scholar
  19. 19.
    Shekhar, S., Huang, Y., Djugash, J., Zhou, C.: Vector map compression: a clustering approach. In: Proc. 10th ACM Int. Symp. Advances in Geographic Inform. Syst.-GIS 2002, pp. 74–80 (2002)Google Scholar
  20. 20.
    Zaletelj, J., Tasic, J.: Optimization and tracking of polygon vertices for shape coding. In: Petkov, N., Westenberg, M.A. (eds.) CAIP 2003. LNCS, vol. 2756, pp. 418–425. Springer, Heidelberg (2003)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2005

Authors and Affiliations

  • Alexander Kolesnikov
    • 1
  1. 1.Speech and Image Processing Unit Department of Computer ScienceUniversity of JoensuuJoensuuFinland

Personalised recommendations